PXIe-5654 Specifications

PXIe-5654 Specifications PXIe, 250 kHz to 20 GHz, PXI RF Analog Signal Generator

Contents

1.	PXIe-5654 Specifications				
2.	Definitions				
3.	Conditions				
4.	Freque	ency	5		
	4.1	Frequency Settling Time	. 5		
5.	Refere	nce Clock	. 5		
	5.1	Internal Clock	5		
	5.2	Internal Reference Output 1	6		
	5.3	Internal Reference Output 2	6		
	5.4	External Reference Input	. 6		
6.	Spectr	al Purity	6		
	6.1	Spurious Responses	8		
7.	Amplit	ude	11		
	7.1	Output Power	11		
	7.2	Amplitude Accuracy	12		
	7.3	Amplitude Settling Time	15		
	7.4	Broadband Noise Floor	16		
	7.5	Voltage Standing Wave Ratio (VSWR)	16		
8.	Modul	ation	17		
	8.1	Amplitude Modulation	17		
	8.2	Frequency Modulation and Phase Modulation	17		
	8.3	Pulse ModulationAt maximum available power.	19		
9.	Power	Requirements	20		
10.	Calibra	ation	20		
11.	Physic	al Characteristics	20		
12.	Enviro	nment	21		
	12.1	Operating Environment	21		
	12.2	Storage Environment	21		
13.	Shock	and Vibration	21		
14.	Compl	liance and Certifications	21		
	14.1	Safety Compliance Standards	21		
	14.2	Electromagnetic Compatibility	22		

14.3	Product	t Certifications and Declarations	22
14.4	Environ	mental Management	22
	14.4.1	EU and UK Customers	23
	14.4.2	电子信息产品污染控制管理办法(中国 RoHS)	23

1 Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Typical-95* specifications describe the performance met by 95% (≈2σ) of models with a 95% confidence.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- *Measured* specifications describe the measured performance of a representative model.

Specifications are Warranted unless otherwise noted.

Specifications are *Characteristic* unless otherwise noted.

Specifications are *Typical* unless otherwise noted.

Specifications are *Nominal* unless otherwise noted.

Specifications are *Measured* unless otherwise noted.

2 Conditions

Minimum or maximum specifications are warranted under the following conditions unless otherwise noted.

- Over ambient temperature ranges of 0 °C to 55 °C
- 30 minutes warm-up time
- Calibration cycle maintained
- Chassis fan speed set to High

• NI-RFSG instrument driver used

Do not disconnect the cable that connects RF AMP OUT to ATTN IN. Removing the cable from or tampering with the RF AMP OUT or ATTN IN front panel connectors voids the product calibration, and specifications are no longer warranted.

Typical specifications are valid under the following condition unless otherwise noted.

• Over ambient temperature ranges of 23 °C± 5 °C

3 Frequency

Range	250 kHz to 20 GHz
Resolution	0.001 Hz
Accuracy	Refer to the <i>Reference Clock</i> section.

3.1 Frequency Settling Time

Frequency settling time^{2,3,4} (nominal)

Standard ^{5,6}	1 ms
Fast tuning ^{5,6,7}	100 μs

4.1 Internal Clock

Initial accuracy

±0.1 ppm, maximum

² The settling time is within 0.1 ppm of the target frequency.

³ The frequency settling time specification includes only frequency settling and excludes any residual amplitude settling that may occur as the result of a large frequency change.

⁴ To obtain the best determinism and accuracy for frequency switching speed, use an external clock source as a trigger.

⁵ Add 1 ms to the frequency settling time for fast tuning or 850 μs for standard tuning when transitioning from > 250 MHz to < 250 MHz.</p>

⁶ The frequency settling time is 150 μs between 250 kHz and 250 MHz.

⁷ Automatic Power Search must be disabled.

Temperature (15 °C to 35 °C)	±0.2 ppm, maximum
Aging (per day, after 30 days)	±0.01 ppm, maximum
Aging (over 10 years)	±1.25 ppm, maximum

4.2 Internal Reference Output 1

Connector name	REF OUT
Frequency	10 MHz
Amplitude	+5 dBm ± 2 dB
Coupling	AC
Output impedance	50 Ω

4.3 Internal Reference Output 2

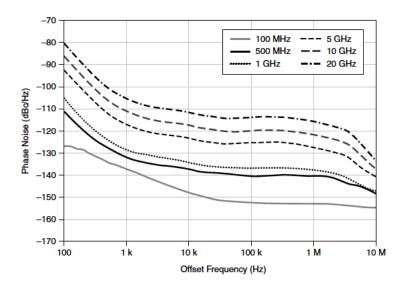
Connector name	REF OUT 2
Frequency	100 MHz
Amplitude	+5 dBm ± 2 dB
Coupling	AC
Output impedance	50 Ω

4.4 External Reference Input

Connector name	REF IN
Frequency	1 MHz to 20 MHz in 1 MHz steps
Amplitude	-10 dBm to +10 dBm
Input impedance	50 Ω
Lock time to external reference	<2s

5 Spectral Purity

Table 1 : Si	ingle Sideband	(SSB) Phase Noise	at +8 dBm Output Power
--------------	----------------	-------------------	------------------------


Frequency	Phase Noise (dBc/Hz)					
(GHz)	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	10 MHz
0.5	-111, typical	-131, typical†	-137, typical	-139, typical	-140, typical	-147, typical

Frequency	Phase Noise (dBc/Hz)					
(GHz)	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	10 MHz
	-107, max	-127, max [†]	-135, max	-137, max	-138, max	—
1	-105, typical	-125, typical	-133, typical	-133, typical	-134, typical	-141, typical
	-101, max	-121, max	-130, max	-131, max	-132, max	_
5	-91, typical	-111, typical	-124, typical	-125, typical	-127, typical	-136, typical
	-87, max	-109, max	-120, max	-122, max	-125, max	_
10	-85, typical	-105, typical	-117, typical	-119, typical	-121, typical	-136, typical
	-81, max	-103, max	-114, max	-117, max	-119, max	_
20	-79, typical	-99, typical	-111, typical	-113, typical	-115, typical	-130, typical
	-75, max	-97, max	-108, max	-111, max	-113, max	_
t Degrades by 1 dB when using the PXIe-5654 with PXIe-5696						

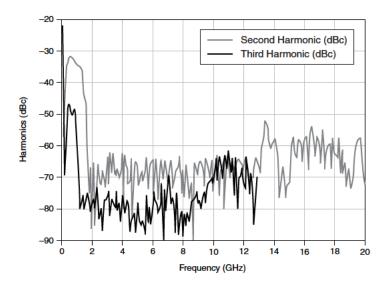
Table 1: Single Sideband (SSB) Phase Noise at +8 dBm Output Power (Continued)

† Degrades by 1 dB when using the PXIe-5654 with PXIe-5696.

Figure 1: Typical Phase Noise (Spurs Not Shown)

5.1 Spurious Responses

Table 2 : Typical Harmonics

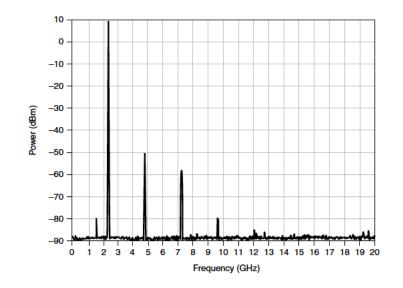

Frequency	Harmonics (dBc)			
Frequency	PXIe-5654 [†]	PXIe-5654 with PXIe-5696 [‡]		
250 kHz to < 25 MHz	≤-18	≤ -20		
25 MHz to < 250 MHz	≤-20	≤ -20		
250 MHz to < 1 GHz	≤-25	≤ -25		
1 GHz to < 2 GHz	≤-30	≤ -30		
2 GHz to < 12 GHz	≤ -40 [§]	≤ -55		
12 GHz to 20 GHz	≤ -40	≤ -50		

† Measured at +10 dBm output power.

‡ Measured at +8 dBm output power.

§ Degrades to -35 dBc between 4.35 GHz and 4.45 GHz.

Figure 2: PXIe-5654 with PXIe-5696 Typical Harmonic Levels at +8 dBm Output Power


Table 3 : Typical Subharmonics

Fraguancy	Subharmonics (dBc)			
Frequency	PXIe-5654 [†]	PXIe-5654 with PXIe-5696 [‡]		
250 kHz to < 10 GHz	-65	-65		
10 GHz to < 12 GHz	-60	-60		
12 GHz to 20 GHz	-50	-45		

Table 4: Typical Nonharmonic Spurs

Fraguancy	Nonharmonic Spurs (dBc)			
Frequency	PXIe-5654 [†]	PXIe-5654 with PXIe-5696 [‡]		
250 kHz to < 8 GHz	-65	-65		
8 GHz to < 10 GHz	-60	-60		
10 GHz to 20 GHz	-60	-55		

Figure 3: PXIe-5654 Typical Spectrum at 2.4 GHz

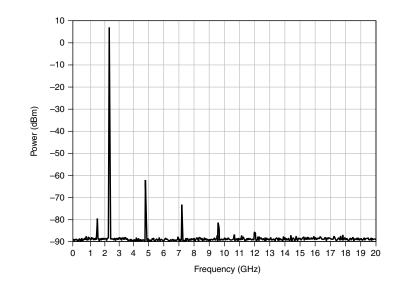
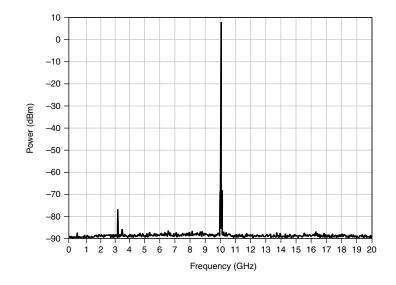
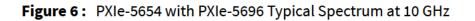
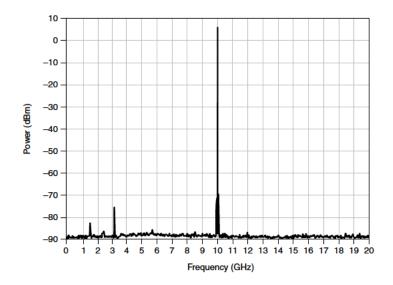





Figure 4: PXIe-5654 with PXIe-5696 Typical Spectrum at 2.4 GHz

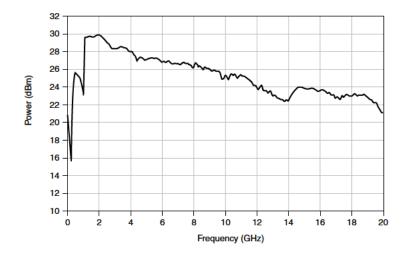
Figure 5: PXIe-5654 Typical Spectrum at 10 GHz

6.1 Output Power

Table 5 :	Maximum	Leveled	Output	Power	(dBm)
-----------	---------	---------	--------	-------	-------

Fraguency	PXIe-565	54	PXIe-5654 with PXIe-5696		
Frequency	Specification	Typical	Specification [†]	Typical	
250 kHz to \leq 250 MHz	+10	+12	+10	+13	
250 MHz to \leq 1 GHz	+13	+14	+20	+23	
1 GHz to \leq 3 GHz	+13	+14	+24	+27	
3 GHz to \leq 6 GHz	+13	+15	+23	+26	
6 GHz to \leq 8 GHz	+13	+15	+20	+25	
8 GHz to \leq 12 GHz	+13	+14	+20	+22	
12 GHz to \leq 15 GHz	+13	+15	+20	+21	
15 GHz to \leq 18 GHz	+13	+15	+18	+21	
18 GHz to \leq 20 GHz	+12	+14	+18	+20	
8 GHz to \leq 12 GHz 12 GHz to \leq 15 GHz 15 GHz to \leq 18 GHz	+13 +13 +13	+14 +15 +15	+20 +20 +18	+22 +21 +21	

† Specifications apply over the 25 °C ± 10 °C temperature range.


Table 6: Nominal Minimum Power (dBm)

Frequency	PXIe-5654	PXIe-5654 with PXIe-5696
250 kHz to < 250 MHz	-10	-110
250 MHz to < 2 GHz	-7	-110
2 GHz to < 18 GHz	-7	-110
18 GHz to 20 GHz	-7	-110

Resolution

0.01 dB

6.2 Amplitude Accuracy

Open-loop mode^{8,9}

±2 dB, typical¹⁰

⁸ Specifies the amplitude accuracy for both the PXIe-5654 module and the PXIe-5654 with PXIe-5696 system device with automatic leveling control (ALC) disabled. Performing a power search improves the amplitude accuracy.

⁹ For the PXIe-5654 with PXIe-5696, refer to the *Amplitude Accuracy* table for amplitude accuracy <-100 dBm.</p>

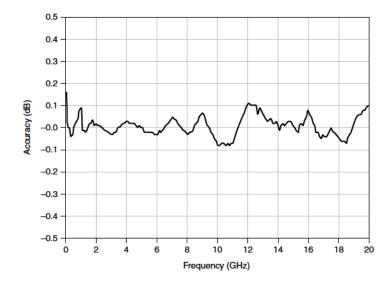

¹⁰ Typical specifications are ± 2.5 dB for frequencies < 20 MHz.

Table 7 : PXIe-5654 with PXIe-5696 Amplitude Accuracy (dB) at 25 °C \pm 10 °C, Closed-Loop Mode¹¹

Center Frequency	> +13 dBm to Maximum Leveled Power	-10 dBm to +13 dBm‡	-40 dBm to < -10 dBm	-80 dBm to < -40 dBm	-100 dBm to < -80 dBm	-110 dBm to < -100 dBm
≤ 250 MHz	_	±0.35, typical	±0.60, typical	±0.70, typical	±2.0, typical	±2.5, typical
S 230 MI12	—	±0.80, max	±1.20, max	±1.50, max§	_	_
250 MHz to	±0.60, typical	±0.35, typical	±0.60, typical	±0.70, typical	±2.0, typical	±2.5, typical
< 8 GHz	±1.20, max	±0.80, max	±1.20, max	±1.50, max		_
8 GHz to	±0.60, typical	±0.35, typical	±0.60, typical	±0.70, typical	±2.0, typical	±2.5, typical
20 GHz	±1.30, max	±0.80, max	±1.20, max	±1.50, max		_

‡ Performance is guaranteed to +10 dBm for frequencies \leq 250 MHz.

§ Specification is ±1.75 dB maximum for frequencies < 20 MHz.

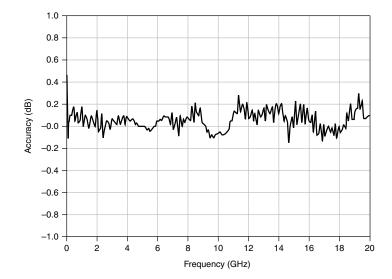
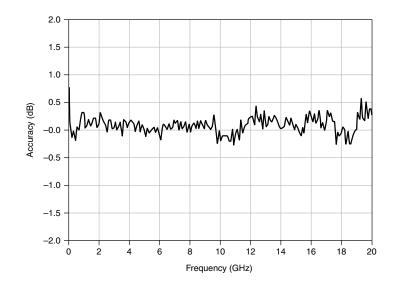



Figure 9: PXIe-5654 with PXIe-5696 Typical Power Accuracy at -70 dBm

Figure 10: PXIe-5654 with PXIe-5696 Typical Power Accuracy at -100 dBm

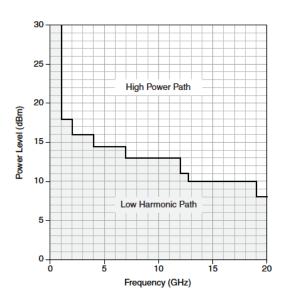
6.3 Amplitude Settling Time

Final Frequency	PXIe-56	PXIe-5654 † , ‡		PXIe-5654 with PXIe-5696 (Open-Loop Mode) ^{‡,§}		PXIe-5654 with PXIe-5696 (Closed-Loop Mode) ^{††,‡‡}	
	1.5 dB Settling Time	2 dB Settling Time	1.5 dB Settling Time	2 dB Settling Time	0.2 dB Settling Time	0.5 dB Settling Time	
< 250 MHz	4 ms	3.5 ms	4 ms	3.5 ms	4 ms	3 ms	
> 250 MHz	500 μs	300 µs	500 μs	300 µs	4 ms	3 ms	

Table 8 : Typical Amplitude Settling Time

† The minimum frequency settling time in open-loop mode is 1 ms (typical) for the standard tuning option and 100 μs (typical) for the fast tuning option.

‡ For module revision D and above, add 60 ms to the settling time values when crossing from > 250 MHz to a frequency range ≤ 250 MHz with output powers above +10 dBm.


- § Add 1 ms to the settling time values when entering the 250 MHz to 2.4 GHz frequency range. For frequency changes within the 250 MHz to 2.4 GHz range, no additional settling time applies.
- tt Add 2.5 ms to the settling time values when crossing 250 MHz.
- Add 2.5 ms to the settling time values when switching from the low harmonic or high power paths. Refer to the *Transition Power Level* figure for more information about path switching.

0.2 dB amplitude settling time¹²

25 ms, typical

^{12 (}PXIe-5654 with PXIe-5696, mechanical attenuator state changed)

6.4 Broadband Noise Floor

```
Broadband noise floor<sup>14</sup> <-145 dBc/Hz, typical at > 20 MHz offset
```

6.5 Voltage Standing Wave Ratio (VSWR)

Table 9: PXIe-5654 with PXIe-5696 VSWR

Amplification Path †	Frequency Range	VSWR
Low harmonic path	250 kHz to 8 GHz	< 1.6 : 1
Low narmonic path	8 GHz to 20 GHz	< 2.0 : 1
High power path	1 GHz to 20 GHz	< 2.0 : 1

† Refer to the *Transition Power Level* figure for more information about the low-harmonic path versus the high-power path.

Output impedance

50 Ω

¹³ This figure represents the default path switching used in NI-RFSG. The PXIe-5654 with PXIe-5696 specifications were measured using the default path switching.

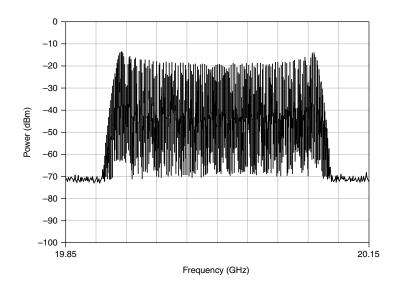
¹⁴ Measured at +10 dBm output power for the PXIe-5654. Measured at +8 dBm output power for the PXIe-5654 with PXIe-5696.

7 Modulation

Supported modulation
types15Amplitude modulation (AM), frequency modulation (FM), phase
modulation (PM), and pulse modulation

7.1 Amplitude Modulation

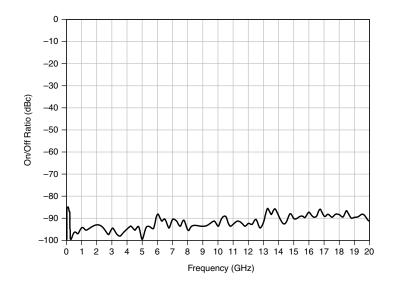
Connector name	AM IN
Modulation rate	DC to 100 kHz
Input level	±1 V, nominal
AM range ¹⁶	±10 dB, nominal
Maximum input level	+2 V
Minimum input level	-2 V
Input impedance	50 Ω, nominal


7.2 Frequency Modulation and Phase Modulation

Connector name	FMIN
FM operating modes	
100 Hz to 1 kHz modulating signal rate	Narrowband
1 kHz to 10 kHz modulating signal rate	Narrowband
10 kHz to 100 kHz modulating signal rate	Narrowband
> 100 kHz modulating signal rate	Wideband
PM operating modes	
DC modulating signal rate	Low phase noise
DC to 100 kHz modulating signal rate	High deviation

¹⁵ AM, FM, and PM modulation types are specified as a capability, not a warranted specification.

¹⁶ Measured at +3 dBm output power for the PXIe-5654. For the PXIe-5654 with PXIe-5696, the AM range varies with frequency and power as well as the selected amplification path. Under worst-case combinations, the AM range may go to 0 dB.


FM and PM division constants ¹⁷	
10,400 MHz to 20,800 MHz	<i>N</i> = 1
5,200 MHz to 10,400 MHz	<i>N</i> = 2
2,600 MHz to 5,200 MHz	<i>N</i> = 4
1,300 MHz to 2,600 MHz	<i>N</i> = 8
650 MHz to 1,300 MHz	<i>N</i> = 16
325 MHz to 650 MHz	<i>N</i> = 32
250 MHz to 325 MHz	<i>N</i> = 64

 $^{^{17}}$ $\,$ For any FM or PM setting, achievable deviation degrades in each band by a factor of 1/N as the frequency changes.

7.3 Pulse Modulation1818At maximum available power.

Connector name	PULSE IN
Repetition frequency	DC to 10 MHz
Input level	
RF on	TTL high
RF off	TTL low
Maximum	+5.5 V
Minimum	-0.5 V
Input impedance	> 100 kΩ
Carrier on/off ratio (250 MHz to 20 GHz) ¹⁹	80 dB

Figure 13: Pulse Modulation On/Off Ratio

Minimum pulse width (250 MHz to 20 GHz)	50 ns, typical
Rise/fall time (250 MHz to 20 GHz)	15 ns
Maximum pulse width compression ²⁰ (250 MHz to 20 GHz)	15 ns, nominal
Delay time (250 MHz to 20 GHz)	< 35 ns, nominal
Pulse overshoot (250 MHz to 20 GHz)	< 10%

¹⁹ Carrier on/off ratio is 80 dB (typical) from 12.75 GHz to 13.75 GHz. Degrades by 3 dB over 0 °C to 55 °C.

²⁰ At 10 MHz repetition frequency, 50% duty cycle.

8 Power Requirements

Table 10: PXIe-5654 DC Power Requirements

Voltage (V _{DC})	Maximum Current (A)	Typical Current (A)
+3.3	2.5	1.9
+12	3	2.4

Table 11: PXIe-5696 DC Power Requirements

Voltage (V _{DC})	Maximum Current (A)	Typical Current (A)
+3.3	3	2.2
+12	2.8	1.6

9 Calibration

Interval	2 years

NOTE

For module revision D and above, use NI-RFSG 20.7 or later to perform an external calibration as described in the *Adjusting RF OUT Power* section of the *PXIe-5654 Calibration Procedure*.

10 Physical Characteristics

PXIe-5654 RF signal generator	
Size	3U, three slot, PXI Express module 6.1 cm x 13.0 cm x 21.4 cm(2.4 in. x 5.1 in. x 8.4 in.)
Weight	1,328 g (46.8 oz)
PXIe-5696 amplitude extender	
Size	3U, two slot, PXI Express module 4.1 cm x 13.0 cm x 21.4 cm(1.6 in. x 5.1 in. x 8.4 in.)
Weight	894 g (31.5 oz)

11 Environment

Maximum altitude 2,000 m (800 mbar) (at 25 °C ambient temperature)

Pollution Degree

Indoor use only.

11.1 Operating Environment

2

Ambient temperature range	0 °C to 55 °C
Relative humidity range	10% to 90%, noncondensing

11.2 Storage Environment

Ambient temperature range	-40 °C to 71 °C
Relative humidity range	5% to 95%, noncondensing

12 Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g _{rms}
Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms}

13.1 Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

NOTE

For safety certifications, refer to the product label or the *Product Certifications and Declarations* section.

13.2 Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- ICES-001: Class A emissions

NOTE

In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in non-residential locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

NOTE

Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

NOTE

For EMC declarations, certifications, and additional information, refer to the *Product Certifications and Declarations* section.

13.3 Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit *ni.com/product-certifications*, search by model number, and click the appropriate link.

13.4 Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Engineering a Healthy Planet* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

13.4.1 EU and UK Customers

Waste Electrical and Electronic Equipment (WEEE) —At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

13.4.2 电子信息产品污染控制管理办法(中国 RoHS)

●●● 中国 RoHS – NI 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Information is subject to change without notice. Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents. At file on your media, or the National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements [EULAs] and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information about end-user license agreements [EULAs] and third-party legal notices in the readme file for your NI product. Refer to the Export Som An in com/gal/export. Compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-104, BAR 252.227-7014, and DFAR 252.227-7015.