

PXI-5422

2023-08-09

n

Contents

PXI-5422 Specifications	
-------------------------	--

PXI-5422 Specifications

These specifications apply to the 8 MB, 32 MB, 256 MB, and 512 MB PXI-5422.

Conditions

Specifications are valid under the following conditions unless otherwise noted:

- Analog filter enabled
- Signals terminated with 50 Ω
- Direct path set to 1 V pk-pk
- Low-gain amplifier path set to 2 V pk-pk
- High-gain amplifier path set to 12 V pk-pk
- Sample rate set to 200 MS/s
- Sample Clock source set to Divide-by-N

Typical specifications are representative of an average unit and valid under the following conditions unless otherwise noted:

Ambient operating temperature range of 20 ±3 °C

CH 0 Analog Output

Number of channels	1
Connector type	SMB jack

Output Voltage

Full-scale voltage	
Main output path	12.00 V pk-pk to 5.64 mV pk-pk into a 50 Ω load

Direct output path	1.000 V pk-pk to 0.707 V pk-pk
DAC resolution	16 bits

Amplitude and Offset

Table 1. Amplitude Range

Path Load		Amplitude (V pk-pk)	
	Minimum	Maximum	
Direct	50 Ω	0.707	1.00
	1 kΩ	1.35	1.91
	Open	1.41	2.00
Low-gain amplifier	50 Ω	0.00564	2.00
	1 kΩ	0.0107	3.81
	Open	0.0113	4.00
High-gain amplifier	50 Ω	0.0338	12.0
	1 kΩ	0.0644	22.9
	Open	0.0676	24.0
Amplitude resolution		<0.06% (0.004 dB) of Amplitude Range	
Offset range		Span of ±50% of Amplitude Range with increments <0.0028% of Amplitude Range	

Maximum Output Voltage

Table 2. Maximum Output Voltage

Path	Load	Maximum Output Voltage (V)
Direct	50 Ω	±0.500
	1 kΩ	±0.953
	Open	±1.000

Path	Load	Maximum Output Voltage (V)
Low-gain amplifier	50 Ω	±1.000
	1 kΩ	±1.905
	Open	±2.000
High-gain amplifier	50 Ω	±6.000
	1 kΩ	±11.43
	Open	±12.00

Accuracy

Table 3. DC Accuracy

Path	DC Accuracy		
	±10 °C of Self-Calibration		0 °C to 55 °C
	Temperature		
Low-gain amplifier	$\pm 0.2\%$ of Amplitude Range \pm 0.05% of Offset \pm 500 μV		$\pm 0.4\%$ of Amplitude Range \pm
High-gain amplifier			0.05% of Offset ± 1 mV
Direct	±0.2% Amplitude Range		±0.4% Amplitude Range
DC offset error		±30 mV	
AC amplitude accuracy		(+2.0% + 1 mV), (-1.0% - 1 mV)	
		(+0.8% + 0.5 mV	′), (-0.2% - 0.5 mV), typical

Output

Output impedance	Software-selectable: 50 Ω or 75 Ω , nominal
Output coupling	DC
Output enable	Software-selectable

Maximum output overload	CH 0 can be connected to a 50 Ω , ±12 V (±8 V for the direct path) source without sustaining any damage.
Waveform summing	Supported

Frequency and Transient Response

Analog filter	Software-selectable: 7-pole elliptical filter for image suppression

Table 4. Pulse Response

Path	Rise/Fall Time (ns), Typical	Aberration (%), Typical
Direct	1.0	16
Low-gain amplifier	2.1	6
High-gain amplifier	4.8	8

Figure 1. Normalized Passband Flatness, Direct Path

Figure 2. Normalized Passband Flatness, Low-Gain Amplifier Path

Figure 3. Normalized Passband Flatness, High-Gain Amplifier Path

Suggested Maximum Frequencies

Path	Frequency (MHz)			
_	Sine	Square	Ramp	Triangle
Direct	80	Not recommended		
Low-gain amplifier		50	10	
High-gain amplifier	43	25		

Table 5. Suggested Maximum Frequencies for Common Functions

Spectral Characteristics

Frequency	SFDR with Harmonics (dB), Typical			
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path	
1 MHz	70	65	66	
5 MHz			58	
10 MHz			52	
20 MHz	63	64	49	

Frequency	SFDR with Harmonics (dB), Typical			
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path	
30 MHz	57	60	43	
40 MHz	48	53	39	
50 MHz				
60 MHz	47	52		
70 MHz				
80 MHz	41			

Table 7. Spurious-Free Dynamic Range (SFDR) without Harmonics

Frequency	SFDR without Harmonics (dB), Typical			
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path	
1 MHz	84	79	76	
5 MHz				
10 MHz	79			
20 MHz				
30 MHz	72	70	67	
40 MHz	47	57	54	
50 MHz		52		
60 MHz	46	51		
70 MHz				
80 MHz	40			

Table 8. Average Noise Density, Direct Path

Amplitude Range		Average Noise Density, Typical		
		nV √Hz	dBm/Hz	dBFS/Hz
1.00 V pk-pk	4.0 dBm	19.9	-141	-145

Amplitude Range		Average Noise Density, Typical		
		nV √Hz	dBm/Hz	dBFS/Hz
0.06 V pk-pk	-20.5 dBm	1.3	-148	-144
0.10 V pk-pk	-16.0 dBm	2.2		
0.40 V pk-pk	-4.0 dBm	8.9		
1.00 V pk-pk	4.0 dBm	22.3	-140	
2.00 V pk-pk	10.0 dBm	44.6	-134	

Table 9. Average Noise Density, Low-Gain Amplifier Path

 Table 10.
 Average Noise Density, High-Gain Amplifier Path

Amplitude Range		Average Noise Density, Typical		
		nV √Hz	dBm/Hz	dBFS/Hz
4.00 V pk-pk	16.0 dBm	93.8	-128	-144
12.00 V pk-pk	25.6 dBm	281.5	-118	

Figure 6. 10 MHz Single-Tone Spectrum, Direct Path, 200 MS/s, Typical

Figure 7. 10.00001 MHz Single-Tone Spectrum, Low-Gain Amplifier Path, 200 MS/s, Typical

Figure 8. Total Harmonic Distortion, Direct Path, Typical

Figure 9. Total Harmonic Distortion, Low-Gain Amplifier Path, Typical

Figure 10. Total Harmonic Distortion, High-Gain Amplifier Path, Typical

Figure 12. Direct Path, Two-Tone Spectrum, Typical

Sample Clock

Sources	
Internal	Divide-by- N (N ≥ 1) DDS-based, High-Resolution
External	CLK IN (SMB front panel connector) DDC CLK IN (DIGITAL DATA & CONTROL front panel connector) PXI Star Trigger (backplane connector) PXI_Trig <07> (backplane connector)

Sample Rate Range and Resolution

Table 11. Sample Rate Range

Sample Clock Source	Sample Rate Range (MS/s)
Divide-by- N	5 to 200
High-Resolution	5 to 100
	>100 to 200
CLKIN	5 to 200
DDC CLK IN	
PXI Star Trigger	5 to 105
PXI_Trig <07>	5 to 20

Table 12. Sample Rate Resolution

Sample Clock Source	Sample Rate Resolution	
Divide-by- N	Configurable to $(200 \text{ MS/s})/\text{N} (1 \le \text{N} \le 40)$	
High-Resolution	1.06 μHz	
	4.24 μHz	
CLK IN	Resolution determined by external clock source.	
DDC CLK IN	External Sample Clock duty cycle tolerance 40%	
PXI Star Trigger	10 60%.	
PXI_Trig <07>		

Sample Clock Delay Range and Resolution

Table 13. Delay Adjustment Range

Sample Clock Source	Delay Adjustment Range
Divide-by- N	±1 Sample Clock period
High-Resolution	
CLK IN	0 ns to 7.6 ns
DDC CLK IN	
PXI Star Trigger	
PXI_Trig <07>	

Table 14. Delay Adjustment Resolution

Sample Clock Source	Delay Adjustment Resolution
Divide-by- N	<5 ps
High-Resolution ≤100 MHz	Sample Clock period/16,384
High-Resolution >100 MHz	Sample Clock period/4,096
CLKIN	<15 ps
DDC CLK IN	
PXI Star Trigger	
PXI_Trig <07>	

System Phase Noise and Jitter (10 MHz Carrier)

Sample Clock Source	System Phase Noise Density Offset (dBc/Hz), Typical		
	100 Hz	1 kHz	10 kHz
Divide-by- N	-110	-122	-138
High-Resolution 100 MS/s	-109	-120	-120
High-Resolution 200 MS/s	-108		-122
CLK IN	-116	-130	-143
PXI Star Trigger	-111	-128	-136

Table 15. System Phase Noise Density Offset

Table 16. System Output Jitter

Sample Clock Source	System Output Jitter (ps rms), Typical
Divide-by- N	1.5
High-Resolution 100 MS/s	4.0
High-Resolution 200 MS/s	4.2
CLK IN	1.1
PXI Star Trigger	2.1

External Sample Clock input jitter tolerance

Cycle-cycle jitter	±150 ps, typical
Period jitter	±1 ns, typical

Sample Clock Exporting

Destinations	 PFI <01> (SMB front panel connectors) DDC CLK OUT (DIGITAL DATA & CONTROL front panel connector) PXI_Trig <06> (backplane connector) 	
Maximum frequency		
PFI <01>	200 MHz	
DDC CLK OUT	200 MHz	
PXI_Trig <06>	20 MHz	
Jitter		
PFI 0	6 ps rms, typical	
PFI 1	12 ps rms, typical	
DDC CLK OUT	60 ps rms, typical	
Duty cycle		
PFI <01>	25% to 65%	
DDC CLK OUT	35% to 65%	

Onboard Clock (Internal VCXO)

Source	Internal Sample Clocks can either be locked to a Reference Clock using a phase-locked loop or derived from the onboard VCXO frequency reference.
Frequency accuracy	±25 ppm

Phase-Locked Loop (PLL) Reference Clock

Sources	PXI_CLK10 (backplane connector) CLK IN (SMB front panel connector)
Frequency accuracy	When using the PLL, the frequency accuracy of the PXI-5422 is solely dependent on the frequency accuracy of the PLL Reference Clock source.
Lock time	≤200 ms, typical
Frequency range	5 MHz to 20 MHz in increments of 1 MHz
Duty cycle range	40% to 60%
Destinations	PFI <01> (SMB front panel connectors) PXI_Trig <06> (backplane connector)

CLK IN

Connector type	SMB jack
Direction	Input
Destinations	Sample Clock
	PLL Reference Clock
Frequency range	
Sample Clock destination	5 MHz to 200 MHz
PLL Reference Clock destination	5 MHz to 20 MHz
Input voltage range into 50 Ω	
Sine wave	0.65 V pk-pk to 2.8 V pk-pk (0 dBm to +13 dBm)
Square wave	0.2 V pk-pk to 2.8 V pk-pk
Maximum input overload	±10 V
Input impedance	50 Ω
Input coupling	AC

PFI 0 and PFI 1

Connector type	SMB jack (x2)
Direction	Bidirectional

Frequency range	DC to 200 MHz	
As an input (trigger)		
Destinations	Start Trigger	
Maximum input overload	-2 V to +7 V	
VIH	2.0 V	
VIL	0.8 V	
Input impedance	1 kΩ	
As an output (event)		
Sources	 Sample Clock divided by integer K (1 ≤ K ≤ 4,194,304) Sample Clock Timebase (200 MHz) divided by integer M (4 ≤ M ≤ 4,194,304) PLL Reference Clock Marker Exported Start Trigger (Out Start Trigger) 	
Output impedance	50 Ω	
Maximum output overload	-2 V to +7 V	
Minimum V OH		
Open load	2.7 V	
50 Ω load	1.3 V	

Maximum V OL	
Open load	0.6 V
50 Ω load	0.2 V
Rise/fall time (20% to 80%)	≤2.0 ns

DIGITAL DATA & CONTROL (DDC)

Connector type	68-pin VHDCI female receptacle
Number of data output signals	16
Control signals	DDC CLK OUT (clock output)
	DDC CLK IN (clock input)
	PFI 2 (input)
	PFI 3 (input)
	PFI 4 (output)
	PFI 5 (output)
Ground	23 pins

Output Signals (Data Outputs, DDC CLK OUT, and PFI <4..5>)

Low-voltage differential signal (LVDS)	
V OH 1	1.3 V, typical

	1.7 V, maximum
VOL	0.8 V, minimum
	1.0 V, typical
Differential output voltage	0.25 V, minimum
	0.45 V, maximum
Output common-mode voltage	1.125 V, minimum
	1.375 V, maximum
Rise/fall time (20% to 80%)	0.8 ns, typical
	1.6 ns, maximum
Output skew	1 ns, typical
	2 ns, maximum
Output enable/disable	Controlled through the software on all data output signals and control signals collectively. When disabled, the output signals go to a high- impedance state.
Maximum output overload	-0.3 V to +3.9 V

Input Signals (DDC CLK IN and PFI <2..3>)

Signal type	Low-voltage differential signal (LVDS)
Input differential impedance	100 Ω

Maximum output overload	-0.3 V to +3.9 V
Differential input voltage	0.1 V, minimum
	0.5 V, maximum
Input common mode voltage	0.2 V, minimum
	2.2 V, maximum

DDC CLK OUT

Clocking format	Data outputs and markers change on the falling edge of DDC CLK OUT.
Frequency range	Refer to the <u>Sample Clock</u> section for more information.
Duty cycle	35% to 65%
Jitter	60 ps rms, typical

DDC CLK IN

Clocking format	DDC data output signals change on the rising edge of DDC CLK IN.
Frequency range	10 Hz to 200 MHz
Input duty cycle tolerance	40% to 60%

Start Trigger

Sources	PFI <01> (SMB front panel connectors)
	PFI <23> (DIGITAL DATA & CONTROL front panel connector)
	PXI_Trig <07> (backplane connector)
	PXI Star Trigger (backplane connector)
	Software (use node or function call)
	Immediate (does not wait for a trigger)
Trigger modes	Single
	Continuous
	Stepped
	Burst
Edge detection	Rising
Minimum pulse width	25 ns
Delay from Start Trigger to CH 0 analog output	65 Sample Clock periods + 110 ns
Delay from Start Trigger to digital data output	41 Sample Clock periods + 110 ns
Destinations	A signal used as a trigger can be routed out to any destination listed in the Destinations specification of the <u>Markers</u> section.

Exported trigger delay	65 ns, typical
Exported trigger pulse width	>150 ns

Markers

Destinations	PFI <01> (SMB front panel connectors)
	PFI <45> (DIGITAL DATA & CONTROL front panel connector)
	PXI_Trig <06> (backpane connector)
Quantity	One marker per segment
Quantum	Marker position must be placed at an integer multiple of four samples.
Width	>150 ns
Skew with respect to analog output	·
PFI <01>	±2 Sample Clock periods
PXI_Trig <06>	±2 Sample Clock periods
Skew with respect to digital data output	
PFI <45>	<2 ns
Jitter	40 ps rms, typical

Arbitrary Waveform Generation Mode

Memory usage	The PXI-5422 uses the Synchronization and Memory Core (SMC) technology in which waveforms and instructions share onboard memory. Parameters—such as number of segments in sequence list, maximum number of waveforms in memory, and number of samples available for waveform storage—are flexible and user-defined.
Onboard memory size	·
8 MB standard	8,388,608 bytes
32 MB option	33,554,432 bytes
256 MB option	268,435,456 bytes
512 MB option	536,870,912 bytes
Output modes	Arbitrary waveform
	Arbitrary sequence

Table 17. Minimum Waveform Size

Trigger Mode	Minimum Waveform Siz	e (Samples)	
Ar Mo	Arbitrary Waveform Mode	Arbitrary Sequence Mode	
		At >50 MS/s	At ≤50 MS/s
Single	16		
Continuous	32	192	96
Stepped			
Burst			
Loop count		1 to 16,777,215	

	Burst trigger: Unlimited
Quantum	Waveform size must be an integer multiple of four samples.

Memory Limits

orv

Onboard Memory	Maximum Waveform Memory (Samples)	
	Arbitrary Waveform Mode	Arbitrary Sequence Mode
8 MB standard	4,194,176	4,194,048
32 MB option	16,777,088	16,776,960
256 MB option	134,217,600	134,217,472
512 MB option	268,435,328	268,435,200

Table 19. Maximum Waveforms in Arbitrary Sequence Mode

Onboard Memory	Maximum Waveforms
8 MB standard	65,000
	Burst trigger: 8,000
32 MB option	262,000
	Burst trigger: 32,000
256 MB option	2,097,000
	Burst trigger: 262,000
512 MB option	4,194,000
	Burst trigger: 524,000

Table 20. Maximum Segments in a Sequence in Arbitrary Sequence Mode

Onboard Memory	Maximum Segments in a Sequence
8 MB standard	104,000
	Burst trigger: 65,000
32 MB option	418,000
	Burst trigger: 262,000

Onboard Memory	Maximum Segments in a Sequence
256 MB option	3,354,000
	Burst trigger: 2,090,000
512 MB option	6,708,000
	Burst trigger: 4,180,000

Calibration

Self-calibration	An onboard, 24-bit ADC and precision voltage reference are used to calibrate the DC gain and offset. The self-calibration is initiated by the user through the software and takes approximately 90 seconds to complete.
External calibration	External calibration calibrates the VCXO, voltage reference, DC gain, and offset. Appropriate constants are stored in nonvolatile memory.
Calibration interval	Specifications valid within two years of external calibration.
Warm-up time	15 minutes

Power

Table 21. Power

	Power	
	Typical Operation	Overload Operation
+3.3 V DC	2 A	
+5 V DC	Refer to <u>Figure 13</u> .	2.7 A
+12 V DC	0.46 A	
-12 V DC	0.01 A	
Total	12.2 W + 5 V × 5 V current	25.7 W

Figure 13. 5 V Current Versus Frequency and Amplitude

Physical

Dimensions	3U, one-slot, PXI/cPCI module
	21.6 cm × 2.0 cm × 13.0 cm (8.5 in. × 0.8 in. × 5.1 in.)
Weight	352 g (12.4 oz)

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)

	0 °C to 45 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.) when installed in a PXI-101 x or PXI-1000B chassis
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	-25 °C to 85 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Shock	
Operating	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Storage	50 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.31 g _{rms} (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.46 g _{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the <u>Product Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, refer to the <u>Online Product</u> <u>Certification</u> section.

CE Compliance 🤇 🧲

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/certification</u>, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Minimize Our Environmental Impact** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more

information about how to recycle NI products in your region, visit <u>ni.com/</u> <u>environment/weee.</u>

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)