Приложение № 7 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2343

Лист № 1 Всего листов 8

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Генераторы сигналов PLG06, PLG12, PLG20

Назначение средства измерений

Генераторы сигналов PLG06, PLG12, PLG20 предназначены для формирования непрерывных гармонических сигналов СВЧ, в том числе с аналоговыми видами модуляции: амплитудной, частотной и фазовой.

Описание средства измерений

Принцип действия генераторов сигналов PLG06, PLG12, PLG20 (далее – PLG) основан на синтезе частоты с цифровой фазовой автоподстройкой частоты. Выходной сигнал генерируется комбинацией октавного генератора, управляемого напряжением (ГУН), и программируемого делителя частоты. ГУН стабилизируется петлей ФАПЧ с программируемым коэффициентом деления в обратной связи относительно высокостабильного кварцевого генератора. Выходной сигнал делителя частоты проходит на выход PLG через цепи усиления, регулировки уровня и фильтрации гармоник.

В состав PLG включен генератор сигналов низкой частоты стандартных форм (НЧГ) – источник модулирующих сигналов.

PLG06 и PLG12 поставляются в двух модификациях: PLG06-11F, PLG06-12F и PLG12-11F, PLG12-12F соответственно. PLG20 поставляется в одной модификации PLG20-12F.

Модификации определяют тип соединителя выхода СВЧ и диапазон выходных частот PLG (см. таблицу 1).

Модификации PLG с указанием соответствующих им наборов принадлежностей приведены в таблице 1.

Общий вид PLG06, PLG12 и PLG20 с указанием места для опломбирования на боковых гранях приведен на рисунках с 1 по 6.

Таблица 1

Наименование	Тип выходного соединителя СВЧ
Генератор сигналов PLG06-11F	N. monorrea
Генератор сигналов PLG12-11F	N, розетка
Генератор сигналов PLG06-12F	SMA, розетка
Генератор сигналов PLG12-12F	3,5 мм, розетка
Генератор сигналов PLG20-12F	3,5 мм, розетка

Рисунок 1 – Общий вид лицевой и оборотной сторон PLG06-12F

Рисунок 2 – Общий вид лицевой и оборотной сторон PLG06-11F

Рисунок 3 – Общий вид лицевой и оборотной сторон PLG12-12F

Рисунок 4 – Общий вид лицевой и оборотной сторон PLG12-11F

Рисунок 5 – Общий вид лицевой и оборотной сторон PLG20-12F

Рисунок 6 – Схема пломбировки от несанкционированного доступа

Программное обеспечение

PLG работают под управлением внешнего персонального компьютера с установленным программным обеспечением PLG-Клиент, который проводит обработку информации, отправку команд и отображает текущий режим работы PLG. Для связи с персональным компьютером используется интерфейс USB 2.0. Персональный компьютер не входит в комплект поставки.

Программное обеспечение реализовано без выделения метрологически значимой части. Недокументированные возможности отсутствуют, все функции полностью описаны в руководстве по эксплуатации. Влияние программного обеспечения не приводит к выходу метрологических характеристик PLG за пределы допускаемых значений.

Уровень защиты программного обеспечения «низкий» в соответствии с P50.2.077-2014. Идентификационные данные программного обеспечения (ПО) приведены в таблице 2.

Таблица 2 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	PLG-Client
Номер версии (идентификационный номер) ПО	не ниже 2.6.3

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики

Таблица 3 – Метрологические характеристики	
Наименование характеристики	Значение
1	2
Диапазон рабочих частот на выходе СВЧ, МГц: PLG06 PLG12 PLG20	от 25 до 6000 от 25 до 12000 от 25 до 20000
Пределы допускаемой относительной погрешности установки частоты сигнала на выходе СВЧ при работе от внутреннего опорного генератора в течение одного года	$\pm 1 \cdot 10^{-6}$
Диапазон установки уровня мощности на выходе СВЧ, дБ (1мВт)	от -40 до 10
Пределы допускаемой основной относительной погрешности установки уровня мощности на выходе СВЧ в нормальных условиях эксплуатации, дБ:	.10
PLG06 PLG12, PLG20	$^{\pm1,0}_{\pm2,0}$
Пределы допускаемой дополнительной относительной погрешности установки уровня мощности на выходе СВЧ в рабочих условиях эксплуатации, дБ:	2,0
PLG06	$\pm 0,5$
РLG12 в диапазоне мощности P: -20 дБ (1мВт) \leq P \leq 10 дБ (1мВт) PLG12 в диапазоне мощности P:-40 дБ (1мВт) \leq P $<$ -20 дБ (1мВт) PLG20	$egin{array}{c} \pm 1,0 \ \pm 2,0 \ \pm 1,0 \end{array}$
Относительный уровень гармонических составляющих спектра сигнала на выходе СВЧ в диапазоне рабочих частот, при уровне мощности 10 дБ (1мВт), в дБн*, не более	-20
Относительный уровень негармонических составляющих спектра сигнала на выходе СВЧ в диапазоне рабочих частот, при уровне мощности 10 дБ (1мВт), в дБн, не более	-60
Относительный уровень субгармонических составляющих спектра сигнала на выходе СВЧ в диапазоне рабочих частот, при уровне мощности 10 дБ (1мВт), в дБн, не более	-45
Спектральная плотность мощности фазовых шумов выходного сигнала при уровне мощности на выходе СВЧ 10 дБ (1мВт), дБн/Гц	приведено в таблице 4
Диапазон частот синусоидального сигнала на выходе НЧГ, Гц	от 1,5 до 1000000 **
Пределы допускаемой абсолютной погрешности установки частоты на выходе НЧГ δf_{ycm} , Γ ц, Γ де f_{ycm} – установленное значение частоты, Γ ц	$\pm (0,0002 + 2 \cdot 10^{-4} f_{ycm})$

Продолжение таблицы 2

Продолжение таолицы 2	
1	2
Диапазон установки амплитуды напряжения сигнала на выходе НЧГ, мВ	от 6 до 3000
Пределы допускаемой абсолютной погрешности установки амплитуды напряжения на выходе НЧГ на частоте 1 кГц δU_{VCT} , мВ, где U_{VCT} – установленное значение напряжения, мВ	$\pm (0.05 \cdot U_{VCT} + 4)$
Относительный уровень гармонических составляющих спектра синусоидального сигнала на выходе НЧГ, дБн, не более (при амплитуде выходного напряжения 1 В)	-40
Диапазон установки глубины внутренней АМ на выходе СВЧ, %: PLG06 PLG12, PLG20	от 1 до 96 от 1 до 70
Пределы допускаемой абсолютной погрешности установки глубины внутренней АМ на выходе СВЧ δD_{AM} , %, где ΔD_{AM} – установленное значение коэффициента АМ, %	$\pm (5+0,1\cdot\Delta_{AM})$
Диапазон установки девиации внутренней ЧМ на выходе СВЧ, Гц,	от $0{,}0002 \cdot f_{eblx}$
где $f_{\text{вых}}$ – установленное значение несущей частоты, МГц	до $0,1:f_{ebix}$
Пределы допускаемой основной абсолютной погрешности установки девиации внутренней ЧМ на выходе СВЧ δM_{YM} , Γ ц***, где ΔM_{YM} установленное значение девиации частоты, Γ ц	$\pm (2+0,1\cdot \Delta \gamma_M)$
Пределы допускаемой дополнительной погрешности установки девиации внутренней ЧМ в диапазоне частот модулирующего сигнала свыше 20 кГц до 100 кГц, Гц, где $\Delta_{\text{ЧМ}}$ – установленное значение девиации частоты, Гц	$\pm 0,3 \cdot \varDelta_{\mathit{YM}}$
Диапазон установки девиации внутренней ФМ на выходе СВЧ, рад,	от 0,002: feых
где $f_{\text{вых}}$ – установленное значение несущей частоты, $\Gamma\Gamma$ ц	до f_{eblx}
Пределы допускаемой основной абсолютной погрешности установки девиации внутренней ФМ на выходе СВЧ $\delta \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	$\pm (0.002 \cdot 0.1 \cdot \Delta_{\phi M})$
Пределы допускаемой дополнительной погрешности установки девиации внутренней ФМ в диапазоне частот модулирующего сигнала свыше 20 к Гц до 100 к Гц, рад, где $\Delta_{\phi M}$ – установленное значение девиации фазы, рад	$\pm 0,3\cdot \Delta_{\Phi M}$
Ослабление уровня мощности на выходе СВЧ в паузе между импульсами при импульсной модуляции (ИМ), дБ, не менее	50
Время нарастания/спада радиоимпульса при ИМ на выходе СВЧ в циапазоне частот сигнала f, нс, не более	
25 MΓ μ ≤ f ≤ 50 MΓ μ	100
$50 \text{ M} \Gamma$ _H < f ≤ 100 MΓ _H	50
$100 \text{ M}\Gamma$ _Ψ < f ≤ $300 \text{ M}\Gamma$ _Ψ	15
300 MΓη < f	10
JUV IVII Ц < I	10

Примечания:

^{* –} дБ относительно мощности сигнала на несущей частоте;

^{** —} частота синусоидального выходного сигнала НЧГ $f_{H^{\eta_c}}$ рассчитывается, как $f_{H^{\eta_c}}=i\cdot 25000000/2^{24}$, где i=1...671088. Соответственно, минимальный шаг перестройки по частоте равен $25000000/2^{24}$ или 1.490116119384765625 Гц. PLG автоматически корректирует до ближайшего допустимого и выводит установленное значение частоты в соответствующее поле ПО;

^{***} при применении фильтра верхних частот демодулированного сигнала с частотой среза 50 Гц;
****при применении фильтра верхних частот демодулированного сигнала с частотой среза 300 Гц.

Таблица 4 - Спектральная плотность мощности фазовых шумов

Частота, МГц	Спектральная плотность мощности фазовых шумов, дБн/Гц*, не более, при отстройке от несущей частоты				
ide foru, wir i	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц
1 000	-73	-104	-114	-112	-125
3 000	-63	-94	-104	-102	-115
6 000	-57	-88	-98	-96	-108
12 000 (для PLG12 и PLG20)	-51	-82	-92	-90	-102
20 000 (для PLG20)	-46	-78	-89	-86	-98

^{* -} Здесь дБн/Гц – дБ относительно уровня мощности колебания несущей частоты при измерении мощности фазовых шумов в полосе частот 1 Гц

Таблица 5 – Основные технические характеристики

Наименование характеристики	Значение	
Дискретность установки частоты на выходе СВЧ, Гц	1	
Дискретность установки мощности на выходе СВЧ, дБ	1	
Форма сигнала на выходе НЧГ	синус, пила, треугольник, импульс, постоянное напряжение, шум	
Тип соединителя выхода НЧГ по MIL-C-39012	МСХ (розетка)	
Источник АМ, ЧМ, ФМ	внешний или НЧГ	
Форма модулирующего сигнала	определяется источником	
Тип соединителя входа модуляции по MIL-C-39012	МСХ (розетка)	
Источник ИМ	внешний или внутренний	
Тип соединителя входа ИМ по MIL-C-39012	МСХ (розетка)	
Тип соединителя порта опорного генератора по MIL-C-39012	МСХ (розетка)	
Тип соединителя питания и управления PLG по ГОСТ Р МЭК 62680-4-2015	USB 2.0 "Мини "В"	
Время установления рабочего режима, ч, не более	0,5	
Продолжительность непрерывной работы, ч, не менее	16	
Габаритные размеры (длина×ширина×высота), мм, не более	130×65×25	
Масса, кг, не более	0,32	
Рабочие условия эксплуатации:		
температура окружающей среды, °С;	от +5 до +50	
относительная влажность воздуха при температуре плюс 25 °C, %;	от 40 до 85	
атмосферное давление, мм рт.ст.	от 537 до 800	
Нормальные условия применения:		
температура окружающей среды, °С;	от 20 до 30	
относительная влажность воздуха при температуре плюс 25 °C, %;	от 40 до 80	
атмосферное давление, мм рт.ст.	от 537 до 800	

Знак утверждения типа

наносится на лицевую сторону в левом верхнем углу (рисунки 1-5) способом металлографики и титульный лист руководства по эксплуатации (в правом верхнем углу) типографским способом.

Комплектность средства измерений

Таблица 6 – Комплектность средства измерений

I аолица 6 — Комплектно	сть средства измерении		
Наименование, тип	Обозначение	Кол- во,	Примечание
паименование, тип	Обозначение	во, ШТ.	примечание
Генератор сигналов			
PLG06-11F, PLG06-12F	ЖНКЮ.467875.028		Модификация определяется при
PLG12-11F, PLG12-12F	ЖНКЮ.467875.039	1	заказе
PLG20-12F	ЖНКЮ.467875.042		
Кабель USB 2.0			
"Стандарт "А" - "Мини	_	1	длина 1,2 м
"B"			
Кабельная сборка	ЖНКЮ.685671.209-08	4	-
Переходы			
коаксиальные			Для модификаций:
ПК2-18-11-11	ЖНКЮ.468562.011-02	1	PLG06-11F, PLG12-11F
ПК2-20-13-13	ЖНКЮ.468562.018-02	1	PLG06-12F, PLG12-12F, PLG20-12F
ПК2-18-11Р-13	ЖНКЮ.468562.014-01	1	PLG06-12F, PLG12-12F, PLG20-12F
ПК2-18-11-13	ЖНКЮ.468562.012-03	1	PLG06-12F, PLG12-12F, PLG20-12F,
			PLG06-11F, PLG12-11F
ПК2-18-11-13Р	ЖНКЮ.468562.013-03	1	PLG06-11F, PLG12-11F
Ключи тарированные			Для модификаций:
KT-2	ЖНКЮ.296442.001-01	1	PLG06-12F, PLG12-12F, PLG20-12F
KT-4	ЖНКЮ.296442.001-03	1	PLG06-11F, PLG12-11F
Руководство по	ЖНКЮ.467875.028 РЭ	1	_
эксплуатации	жико.407873.02813	1	
	ЖНКЮ.467875.028 ФО		для PLG06-11F, PLG06-12F
Формуляр	ЖНКЮ.467875.039 ФО	1	для PLG12-11F, PLG12-12F
	ЖНКЮ.467875.042 ФО		для PLG20-12F
Методика поверки	PT-MΠ-7511-441-2020	1	-
			Для модификаций:
Упаковка	ЖНКЮ.467986.005	1	PLG06-11F, PLG12-11F
	ЖНКЮ.467986.005-01		PLG06-12F, PLG12-12F, PLG20-12F

Поверка

осуществляется по документу РТ-МП-7511-441-2020 «ГСИ. Генераторы сигналов PLG06, PLG12, PLG20. Методика поверки», утвержденному 12 августа 2020 года.

Основные средства поверки:

- анализатор сигналов PSA E4448A с опциями 226 и 233 (регистрационный номер в Федеральном информационном фонде 39229-08);
- частотомер универсальный CNT-90XL (регистрационный номер в Федеральном информационном фонде 41567-09);
- ваттметр поглощаемой мощности блоком измерительным N1913A (регистрационный номер Федеральном информационном фонде 57386-14) В преобразователями измерительными Е9304А-Н18 (регистрационный номер в Федеральном информационном фонде 57387-14) и Е4413А (регистрационный номер в Федеральном информационном фонде 57163-14);

- мультиметр цифровой 34410A (регистрационный номер в Федеральном информационном фонде 47717-11);
- осциллограф TDS3032B (регистрационный номер в Федеральном информационном фонде 24021-02);
- комплекты измерителей присоединительных размеров КИПР-11Р-11, КИПР-12Р-12, КИПР-13Р-13 (регистрационный номер в Федеральном информационном фонде 68805-17).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на лицевую панель генератора в соответствии с рисунками 1 - 5 и (или) на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к генераторам сигналов PLG06, PLG12, PLG20

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ЖНКЮ.467875.028 ТУ Генераторы сигналов PLG06, PLG12, PLG20. Технические условия.

Приказ Росстандарта № 1621 от 31.07.2018 Об утверждении государственной поверочной схемы для средств измерений времени и частоты

Приказ Росстандарта № 3461 от 30.12.2019 Об утверждении государственной поверочной схемы для средств измерений мощности электромагнитных колебаний в диапазоне частот от 9 кГп до 37,5 ГГп

ГОСТ Р 8.607-2004 ГСИ. Государственная поверочная схема для средств измерений девиации частоты

ГОСТ Р 8.717-2010 ГСИ. Государственная поверочная схема для средств измерений коэффициента амплитудной модуляции высокочастотных колебаний

Изготовитель:

Акционерное общество «Научно-производственная фирма «МИКРАН» (АО «НПФ «МИКРАН»)

ИНН 7017211757

634041, г. Томск, просп. Кирова, д. 51д Телефон: +7(3822) 90-00-29, 41-34-03

Факс: +7(3822) 42-36-15 E-mail: mic@micran.ru Web-сайт: www.micran.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7(495) 544-00-00

E-mail: info@rostest.ru

Web-сайт: http://www.rostest.ru

Регистрационный номер RA.RU.310639 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.