Приложение № к сведениям о типах средств измерений, прилагаемых к приказу Федерального агентства по техническому регулированию и метрологии от «30» марта 2022 г. №797

Регистрационный № 85014-22

Лист 1 Всего листов 11

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы сигналов и спектра СК4-МАХ6

Назначение средства измерений

Анализаторы сигналов и спектра СК4-MAX6 (далее – анализаторы) предназначены для исследования и визуального наблюдения составляющих спектра (частоты и уровня) периодически повторяющихся сигналов, а также измерения их характеристик в диапазоне частот от 1 Γ ц до 40 (26,5)¹ Γ Γ ц.

Описание средства измерений

По принципу действия анализаторы СК4-МАХ6 являются анализаторами спектра последовательно-параллельного типа. Анализаторы представляют собой автоматически перестраиваемые супергетеродинные приемники, которые производят предварительную фильтрацию и усиление входного радиосигнала, его перенос на промежуточную частоту (далее - ПЧ), фильтрацию на ПЧ, детектирование, аналого-цифровое преобразование, цифровую сигнальную обработку и последующее отображение амплитуд спектральных компонент в зависимости от частоты в виде спектрограмм на экране с одиночной/многократной развёрткой, а также, в зависимости от установленной опции, вычисление и отображение характеристик радиосигналов с различными типами модуляции. В низкочастотной области предусмотрена непосредственная подача сигнала на аналогово-цифровой преобразователь. В высокочастотной области подавление зеркального канала приема осуществляется с помощью фильтров преселектора с возможностью их отключения для анализа сверхширокополосных сигналов. В составе анализаторов имеются фильтры ПЧ для проведения измерений по электромагнитной совместимости.

Конструктивно анализаторы выполнены в виде переносного моноблока в металлическом корпусе, предназначенном для установки в стойку по ГОСТ 28601.2-90 и имеют модульную высоту 6U согласно ГОСТ 28601.1-90. На передней панели анализаторов расположены коаксиальные соединители входных и выходных СВЧ-разъемов, органы управления и жидкокристаллический цветной сенсорный дисплей. На задней стороне расположены коаксиальное соединители входа и выхода сигналов опорных частот, входов и выходов синхронизации, выходов сигналов ПЧ, разъёмы цифровых интерфейсов.

Управление операциями меню, а также задание рабочих параметров анализаторов производится с помощью клавиатуры передней панели и/или сенсорного ввода; результаты измерений выводятся на один или несколько экранов дисплея в графической и цифровой формах. Для работы в составе автоматизированных систем анализаторы обеспечивают подключение по интерфейсу LAN с использованием SCPI-команд стандарта IEEE/IEC 60488-2.

Анализаторы имеют два исполнения, отличающиеся диапазонами рабочих частот:

- исполнение ПТРВ.411168.001 от 1 Гц до 40 ГГц;
- исполнение ПТРВ.411168.001-01 от 1 Гц до 26,5 ГГц.

¹⁾ Здесь и далее по тексту при указании диапазона частот запись вне скобок обозначает частотный диапазон для исполнения ПТРВ.411168.001, запись в скобках – для исполнения ПТРВ.411168.001-01.

Функциональные возможности анализаторов определены составом опций, приведенных в таблице 1.

Таблица 1 – Описание опций анализаторов

Таблица 1 – Описание опций анализаторов				
Код опции	Тип опции	Функциональное назначение		
LNA	аппаратно- программная	Встроенный отключаемый предусилитель для улучшения чувствительности анализаторов		
ACC	аппаратно- программная	Встроенный отключаемый разделительный конденсатор на входе анализаторов, позволяющий защитить их входные цепи от постоянного напряжения		
YIGNB	аппаратно- программная	Узкополосный ЖИГ-фильтр в составе преселектора анализаторов		
YIGWB	аппаратно- программная	Широкополосный ЖИГ-фильтр в составе преселектора анализаторов		
AT2	аппаратно- программная	Входной электронный аттенюатор с шагом ослабления 2 дБ		
IF2RP	аппаратно- программная	Выход сигнала промежуточной частоты ПЧ2 на заднюю панель		
IF3RP	аппаратно- программная	Выход сигнала промежуточной частоты ПЧЗ на заднюю панель		
LOGVRP	аппаратно- программная	Выход сигнала огибающей логарифмического детектора ПЧЗ на заднюю панель		
B10	аппаратно- программная	Максимальная ширина полосы анализа сигналов в режиме реального времени 10 МГц		
B25	аппаратно- программная	Максимальная ширина полосы анализа сигналов в режиме реального времени 25 МГц		
B40	аппаратно- программная	Максимальная ширина полосы анализа сигналов в режиме реального времени 40 МГц		
B85	аппаратно- программная	Максимальная ширина полосы анализа сигналов в режиме реального времени 85 МГц		
B160	аппаратно- программная	Максимальная ширина полосы анализа сигналов в режиме реального времени 160 МГц		
B320	аппаратно- программная	Максимальная ширина полосы анализа сигналов в режиме реального времени 320 МГц		
B510	аппаратно- программная	Максимальная ширина полосы анализа сигналов в режиме реального времени 510 МГц		
B1200	аппаратно- программная	Максимальная ширина полосы анализа сигналов в режиме реального времени 1200 МГц		
S11	аппаратно- программная	Опция измерения модуля коэффициента отражения устройств		
S21	аппаратно- программная	Опция измерения модуля коэффициента передачи устройств		
NF	аппаратно- программная	Опция измерения модуля коэффициента шума устройств		
P1	аппаратно- программная	Опция измерения нелинейных параметров устройств		

Продолжение таблицы 1

Продолжение	таолицы т			
Код опции	Тип опции	Функциональное назначение		
DPLX	аппаратно-	Встроенный диплексер для возможности работы с внешними		
DPLA	программная	смесителями		
EMI	аппаратно-	Опина номоритон ного приоминко над ополки ЭМС		
LIVII	программная	Опция измерительного приемника для оценки ЭМС		
630D	аппаратно-	Модуль управления на базе процессора Intel® Core™ i7-5700EQ,		
030D	программная	8 ГБ оперативной памяти		
830D	аппаратно-	Модуль управления на базе процессора $Intel @ Core^{TM} i7-5850EQ$,		
830D	программная	8 ГБ оперативной памяти		
440D	аппаратно-	Модуль управления на базе процессора Intel® Xeon® Processor		
440D	программная	E3-1505L v6, 16 ГБ оперативной памяти		
636D	аппаратно-	Модуль управления на базе процессора Intel® Xeon® Processor		
030D	программная	Е3-1505M v6, 8 ГБ оперативной памяти		
аппаратно- Модуль управления на базе процессора Intel® Xe				
040D	программная	Е3-1505M v6, 16 ГБ оперативной памяти		
CPC522-01	аппаратно-	Модуль управления на базе процессора Intel® Xeon® E-2276ML,		
C1 C322-01	программная 16 ГБ оперативной памяти			
CPC522-02	аппаратно- Модуль управления на базе процессора Intel® Core™ i3-9100Н			
C1 C322-02	программная	16 ГБ оперативной памяти		
SSD256	аппаратно-	Извлекаемый твердотельный накопитель для записи отсчетов		
55D250	программная	измеряемых сигналов емкостью 256 ГБ		
SSD512	аппаратно-	Извлекаемый твердотельный накопитель для записи отсчетов		
555512	программная	измеряемых сигналов емкостью 512 ГБ		
SSD1	аппаратно-	Извлекаемый твердотельный накопитель для записи отсчетов		
551	программная	измеряемых сигналов емкостью 1 ТБ		
SSD2	аппаратно-	Извлекаемый твердотельный накопитель для записи отсчетов		
55D2	программная	измеряемых сигналов емкостью 2 ТБ		
STRM	аппаратно-	Возможность передачи отсчетов измеряемых сигналов по опти-		
STRWI	программная	ческому каналу для записи на внешнее хранилище данных		
PN	программная	Опция измерения спектральной плотности мощности фазового шума источников сигнала		
ADEM	программная	Опция демодуляции сигналов с аналоговыми видами модуляции		
DDEM	программная	Опция демодуляции сигналов с цифровыми видами модуляции		
PULSE	программная	Опция измерения параметров импульсных сигналов		
RTSA	программная	Опция для работы в режиме реального времени		

Примечания

Общий вид анализаторов приведен на рисунке 1. Вид передней панели анализаторов приведен на рисунке 2. Схема пломбировки анализаторов приведена на рисунке 3.

¹ Опции B10, B25, B40, B85, B160, B320, B510 и B1200 являются взаимоисключающими, выбор любой из них является необходимым.

² Опции 630D, 830D, 440D, 440D, 636D, 640D, CPC522-01 и CPC522-02 являются взаимоисключающими, выбор любой из них является необходимым.

³ Опции SSD256, SSD512, SSD1 и SSD2 являются взаимоисключающими.

Рисунок 1 – Общий вид анализатора

Место для нанесения знака об утверждении типа средства измерений

Рисунок 2 – Вид передней панели анализатора

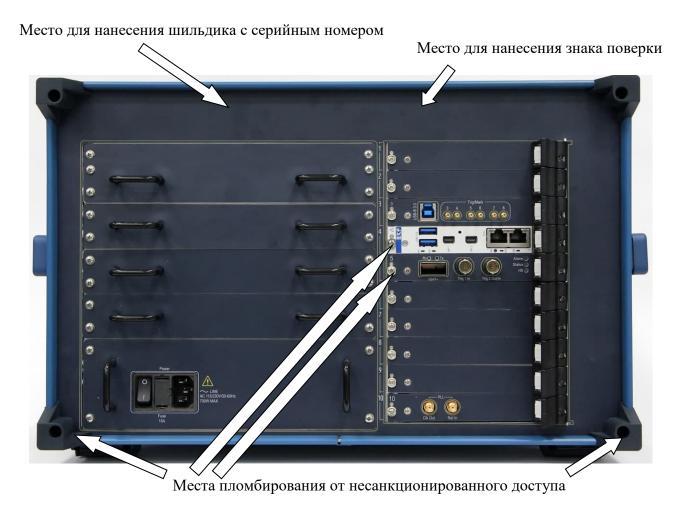


Рисунок 3 – Схема пломбировки анализатора

Программное обеспечение

Анализаторы работают под управлением встроенного персонального компьютера, на котором развёрнуто встроенное программное обеспечение (далее – ПО) СК4-МАХ6, которое управляет аппаратной частью, обрабатывает измерительную информацию, обрабатывает поступающие SCPI-команды и выдает результат их исполнения, обеспечивает отображение результатов измерений и их запись в энергонезависимую память. Метрологически значимая часть ПО анализаторов представляет собой часть встроенного ПО СК4-МАХ6. Недокументированные возможности ПО отсутствуют, все функции полностью описаны в руководстве оператора ПТРВ.00088-01 34 01. Метрологические характеристики анализаторов нормированы с учетом влияния ПО. Влияние ПО не приводит к выходу метрологических характеристик анализаторов за пределы допускаемых значений.

Уровень защиты ПО от преднамеренных и непреднамеренных изменений соответствует уровню «высокий» в соответствии с Р 50.2.077-2014.

Таблица 2 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Наименование ПО	PhaseB	
	ПТРВ.00088-01	
Идентификационное наименование ПО	Встроенное программное обеспечение СК4-MAX6	
Номер версии (идентификационный номер) ПО	не ниже 1.0.115.8	
Цифровой индикатор ПО (контрольная сумма исполняемого кода)	индивидуален для каждого анализатора	
Алгоритм вычисления цифрового идентификатора ПО	Стрибог ГОСТ 34.11-2018	

Метрологические и технические характеристики Таблица 3 — Метрологические характеристики

Таблица 3 – Метрологические характеристики	
Наименование характеристики	Значение
Диапазон рабочих частот:	
– для исполнения ПТРВ.411168.001	от 1 Гц до 40 ГГц
– для исполнения ПТРВ.411168.001-01	от 1 Гц до 26,5 ГГц
Пределы допускаемой относительной погрешно-	
сти воспроизведения частоты опорного генератора	$\pm 2,0\cdot 10^{-8}$
$(\delta_{ m REF~Out})$	
Пределы допускаемой абсолютной погрешности	$\pm (\delta_{\text{REF Out}} \cdot f_{\text{c}}, +1 \cdot 10^{-3} \cdot \PiO + 5 \cdot 10^{-2} \cdot \Pi\Pi P\Phi +$
измерений частоты входного синусоидального	$+1 \Gamma_{\text{H}} + 0.5 \cdot \Pi\text{O}/(\text{KT-1}))^{-1}$
сигнала, Гц	. , , , , , , , , , , , , , , , , , , ,
Средний отображаемый уровень собственных шу-	
мов в полосе 1 Гц, выключенном предусилителе,	
выключенном обходе преселектора на частотах, дБ	
(отн. 1 мВт), не более:	
– от 100 Гц до 9 кГц	-141
– ot 9 κΓι до 100 κΓι	-143
– от 100 кГц до 30 МГц	-151
– от 30 МГц до 1 ГГц	-149
– от 1 ГГц до 3,6 ГГц	-146
– от 3,6 до 8,4 ГГц	-150
– от 8,4 до 13,6 ГГц	-146
– от 13,6 до 26,5 ГГц	-143
– от 26,5 до 40 ГГц (для исполнения ПТРВ.411168.001)	-124
Средний отображаемый уровень собственных шу-	
мов в полосе 1 Гц, выключенном предусилителе,	
включенном обходе преселектора на частотах, дБ	
(отн. 1 мВт), не более:	
– от 100 Гц до 9 кГц	не нормируется
– от 9 кГц до 100 кГц	не нормируется
– от 100 кГц до 30 МГц	не нормируется
– от 30 МГц до 1 ГГц	-152
– от 1 ГГц до 3,6 ГГц	-155
– от 3,6 до 8,4 ГГц	-156
– от 8,4 до 13,6 ГГц	-153
– от 13,6 до 26,5 ГГц	-147
– от 26,5 до 40 ГГц (для исполнения ПТРВ.411168.001)	-139

Продолжение таблицы 3

Продолжение таблицы 3	
Наименование характеристики	Значение
Средний отображаемый уровень собственных шу-	
мов в полосе 1 Гц, включенном предусилителе,	
выключенном обходе преселектора на частотах,	
дБ (отн. 1 мВт), не более:	
– от 100 Гц до 9 кГц	не нормируется
– от 9 кГц до 100 кГц	-150
– от 100 кГц до 30 МГц	-140
– от 30 МГц до 1 ГГц	-168
- от 1 ГГц до 3,6 ГГц	-168
– от 3,6 до 8,4 ГГц	-168
– от 8,4 до 13,6 ГГц	-168
– от 13,6 до 26,5 ГГц	-164
– от 26,5 до 40 ГГц (для исполнения ПТРВ.411168.001)	-152
Средний отображаемый уровень собственных шу-	
мов в полосе 1 Гц, включенном предусилителе,	
включенном обходе преселектора на частотах, дБ	
(отн. 1 мВт), не более:	
– от 100 Гц до 9 кГц	
– от 9 кГц до 100 кГц	не нормируется
– от 100 кГц до 30 МГц	не нормируется
– от 30 МГц до 1 ГГц	не нормируется -165
– от 1 ГГц до 3,6 ГГц	-163 -168
– от 3,6 до 8,4 ГГц	-167
– от 8,4 до 13,6 ГГц	-168
– от 13,6 до 26,5 ГГц	-160
– от 26,5 до 40 ГГц (для исполнения ПТРВ.411168.001)	-150
Пределы допускаемой погрешности установки но-	5.0/
минальных значений полос пропускания по уров-	5 % для полос пропускания
ню минус 3 дБ, не более	от 1 Гц до 10 МГц
Максимальный уровень измеряемой мощности, дБ	30
(отн. 1 мВт)	30
Пределы допускаемой абсолютной погрешности	
измерения уровней мощности синусоидального	
сигнала в диапазоне частот от 100 МГц до 10 ГГц	⊥1
в диапазоне мощностей от минус 80 до плюс 20 дБ	±1
(отн. 1 мВт) в диапазоне температур эксплуатации	
от плюс 15 до плюс 25 °C, дБ, не более	

Продолжение таблицы 3

продолжение таолицы 3	
Наименование характеристики	Значение
Пределы допускаемой погрешности измерений	
мощности при ослаблении входного аттенюатора	
10 дБ, в диапазоне мощностей входного сигнала	
от минус 70 до плюс 5 дБ (отн. 1 мВт), в диапазоне	
температур эксплуатации от плюс 15 до плюс	
25 °С, дБ:	
– на опорной частоте 50 МГц	$\pm (0,27+0,03)$
– в частотном диапазоне от 100 Гц до 40 (26,5) ГГц	$\pm (0.3 + $ неравномерность AЧX)
– в частотном диапазоне от 30 МГц до 40 (26,5) ГГц	, , , , , , , , , , , , , , , , , , , ,
с включенным предусилителем (при наличии опции	
LNA) в диапазоне мощностей от минус 70 до минус	
20 дБ (отн. 1 мВт)	$\pm (0,4 + $ неравномерность AЧX)
Пределы допускаемой погрешности измерений	`
мощности на опорной частоте 50 МГц при выклю-	
ченном предусилителе (при наличии опции LNA) в	
диапазоне температур эксплуатации от плюс 15 до	
плюс 25 °C, при изменении ослабления входного	
аттенюатора, дБ:	
– от 0 до 20 дБ	$\pm 0,14$
– от 25 до 65 дБ	±0,2
Неравномерность АЧХ относительно опорной ча-	0,2
стоты 50 МГц при ослаблении входного аттенюа-	
тора 10 дБ, выключенном/включенном предусили-	
теле (при наличии опции LNA) в диапазоне темпе-	
ратур эксплуатации от плюс 15 до плюс 25 °C на	
частотах, дБ, не более:	
– от 100 Гц до 30 МГц (при выключенном преду-	
силителе и в полосе пропускания 1 кГц)	$\pm 0,5$
– от 30 МГц до 3,6 ГГц	$\pm 0{,}4$
– от 3,6 до 8,4 ГГц	$\pm 0,5$
– от 8,4 до 10 ГГц	$\pm 0,5$
– от 10 до 26,5 ГГц	±1,5
– от 26,5 до 40 ГГц	±2,5
Относительная спектральная плотность мощности	
фазовых шумов для частоты несущей 100 МГц при	-121
отстройке 1 к Γ ц, д $Б$ н/ Γ ц $^{2)}$, не более	
Относительная спектральная плотность мощности	
фазовых шумов для частоты несущей 1 ГГц при	
отстройке от несущей, дБн/Гц, не более:	
— 1 кГц	-116
- 10 κΓ _Ц	-124
– 100 κΓμ	-125
– 1 МГц	-125
– 10 МГц	-130

Окончание таблицы 3

Наименование характеристики	Значение
Относительный уровень помех, обусловленный интермо-	
дуляционными искажениями третьего порядка, при ослаб-	
лении входного аттенюатора 10 дБ, выключенном предуси-	-83
лителе (при наличии опции LNA) и выключенном обходе	03
преселектора (уровень двухтонального сигнала минус	
25 дБ (отн. 1 мВт), разность частот 1 М Γ ц), дБн $^{3)}$, не более	
Уровень подавления каналов приёма комбинационных ча-	
стот и прочих паразитных каналов при выключенном обхо-	
де преселектора на частотах, дБ, не менее:	
– от 9 кГц до 100 МГц	85
– от 100 МГц до 3,6 ГГц	87
– от 3,6 до 8,4 ГГц	75
– от 8,4 до 26,5 ГГц	70
– от 26,5 до 40 ГГц	63
КСВН входа при ослаблении входного аттенюатора 10 дБ и	
выключенном предусилителе (при наличии опции LNA), не	
более:	
– на частотах до 13,6 ГГц	1,5
– на частотах свыше 13,6 ГГц	1,8

 $^{^{1)}}$ Где $\delta_{REF\ Out}$ — относительная погрешность частоты опорного генератора; f_c — частота измеряемого сигнала (Гц); ПО — ширина полосы обзора (Гц); ППРФ — текущее значение ширины полосы пропускания разрешающего фильтра полосы пропускания (Гц); КТ — число точек отображения.

Таблица 4 – Основные технические характеристики

	2wayyayyya
Наименование характеристики	Значение
Время установления рабочего режима, ч, не более	0,5
Продолжительность непрерывной работы, ч, не менее	16
Габаритные размеры, мм:	
– длина	670
– ширина	475
– высота	285
Масса, кг	42 ± 0.5
Номинальное напряжение электропитания от сети переменного	
тока частотой 50 Гц, удовлетворяющего нормам качества, установ-	220
ленным ГОСТ 32144, В	
Потребляемая мощность, В А, не более	700
Условия эксплуатации по ГОСТ 22261-94	группа 3
Рабочие условия эксплуатации:	
– температура окружающего воздуха, °С	от +5 до +50
– относительная влажность воздуха при температуре 25 °C, %, не	
более	90
– атмосферное давление, кПа (мм рт. ст.)	от 60 до 106,7
	(от 450 до 800)
Наработка на отказ, ч, не менее	25000

 $^{^{2)}}$ Где дБн/Гц — децибел по отношению к мощности несущей в полосе 1 Гц.

³⁾ Где дБн – децибел по отношению к мощности несущей.

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации ПТРВ.411168.001 РЭ в правом верхнем углу и на переднюю панель анализатора в левом верхнем углу методом наклейки в соответствии с рисунком 2.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование изделия	Обозначение изделия	Количество
Анализатор сигналов и спектра СК4-МАХ6 в составе:	ПТРВ.411168.001 (-01)	1 шт.
Анализатор сигналов и спектра	ПТРВ.411168.002 (-01)	1 шт.
Встроенное программное обеспечение СК4-МАХ6	ПТРВ.00088-01	1 шт.
Комплект предохранителей	ПТРВ.305659.001	1 комплект
Комплект ключей	ПТРВ.305659.002	1 комплект
Комплект переходов коаксиальных	ПТРВ.305659.003	1 комплект
Комплект кабелей и жгутов	ПТРВ.411919.001	1 комплект
Упаковка 1)	ПТРВ.321341.001	1 шт.
Комплект эксплуатационных документов согласно ведомости	ПТРВ.411168.001 ВЭ	1 комплект
¹⁾ Возможна замена на упаковку ПТРВ.321429.001.		

Сведения о методиках (методах) измерений

приведены разделе 2 «Использование по назначению» документа ПТРВ.411168.001 РЭ «Анализатор сигналов и спектра СК4-МАХ6. Руководство по эксплуатации» и в разделе 4 «Выполнение программы» документа ПТРВ.00088-01 34 01 «Встроенное программное обеспечение СК4-МАХ6. Руководство оператора».

Нормативные и технические документы, устанавливающие требования к анализаторам сигналов и спектра СК4- MAX6

Приказ Росстандарта от 31.07.2018 г. № 1621 «Об утверждении государственной поверочной схемы для средств измерений времени и частоты»

Приказ Росстандарта от 30.12.2019 г. № 3461 «Об утверждении государственной поверочной схемы для средств измерений мощности электромагнитных колебаний в диапазоне частот от $9~\mathrm{k}\Gamma$ ц до $37,5~\mathrm{\Gamma}\Gamma$ ц»

Приказ Росстандарта от 29.12.2018 г. № 2839 «Об утверждении государственной поверочной схемы для средств измерений мощности электромагнитных колебаний в диапазоне частот от 37,5 до 78,33 ГГц»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ПТРВ.411168.001 ТУ Анализатор сигналов и спектра СК4-МАХ6. Технические условия

Изготовитель

Акционерное общество «Производственная компания «НОВЭЛ» (АО «ПК «НОВЭЛ») ИНН 7726448035

Адрес: 117587, г. Москва, Варшавское шоссе, д.125, стр.1, ком. 15

Web-сайт: www. novel.pk.ru E-mail: info@novel-pk.ru

Испытательный центр

Адрес: 141570, Московская обл., Солнечногорский р-н, г. Солнечногорск, рабочий поселок Менделеево, промзона ФГУП «ВНИИФТРИ»

Телефон (факс): +7 (495) 526-63-00

Web-сайт: www.vniiftri.ru E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 11.05.2018

Заместитель				
Руководителя Федерального				
агентства по техническому				
регулированию и метрологии			А.В. Кулешов	
	М.п.	«	»	2021 г.