

PXIe-5423

Contents

PXIe-5423 Specifications.	3
---------------------------	---

PXIe-5423 Specifications

These specifications apply to the one-channel and two-channel PXIe-5423.

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

The following characteristic specifications describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- **Measured** specifications describe the measured performance of a representative model.

Conditions

All specifications are valid under the following conditions unless otherwise noted:

- Signals terminated with 50 Ω to ground
- Load impedance set to 50 Ω
- Amplitude set to 2.4 V_{pk-pk}
- Analog Path property or NIFGEN_ATTR_ANALOG_PATH attribute set to Main (default)
- Reference Clock set to Onboard Reference Clock

Warranted and typical specifications are valid under the following conditions unless otherwise noted:

- Ambient temperature range of 0 °C to 55 °C
- 15-minute warm-up time before operation
- Self-calibration performed after instrument is stable
- External calibration cycle maintained and valid
- PXI Express chassis fan speed set to HIGH, foam fan filters removed if present, and empty slots contain PXI chassis slot blockers and filler panels

Analog Output

Number of channels	1 or 2
Output type	Referenced single-ended
Connector type	SMA
DAC resolution	16 bits
Amplitude range, in 0.16 dB steps	
50 Ω load	0.00775 V_{pk-pk} to 12 V_{pk-pk}
Open load	0.0155 V_{pk-pk} to 24 V_{pk-pk}
Offset range	±50% of Amplitude Range (V _{pk-pk})
Offset resolution	16-bit full-scale range
DC accuracy	
Within ±5 °C of self-calibration temperature	$\pm 0.35\%$ of Amplitude Range \pm 0.35% of Offset Requested \pm 500 μV , warranted

0 °C to 55 °C	$\pm 0.55\%$ of Amplitude Range \pm 0.55% of Offset Requested \pm 500 $\mu\text{V},$ typical
AC amplitude accuracy (within ±5 °C of self- calibration temperature)	±1.0% ± 1 mV _{pk-pk} , warranted
Output impedance	50 Ω
Load impedance	Output waveform is compensated for user- specified impedances
Output coupling (ground referenced)	DC
Output enable	Software-selectable
Maximum output overload	$\pm 12 V_{pk-pk}$ from a 50 Ω source
Waveform summing	Supported

Standard Function

Sine Waveform

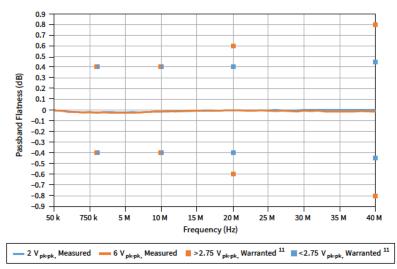

Frequency range	0 MHz to 40 MHz
Frequency step size	2.84 μHz

Table 1. Passband Flatness

Sine Frequency	Passband Flatness (dB), Warranted	
	0.06 V _{pk-pk} to 2.75 V _{pk-pk}	>2.75 V _{pk-pk}
1 MHz	±0.4	±0.4
10 MHz	±0.4	±0.4
20 MHz	±0.4	±0.6

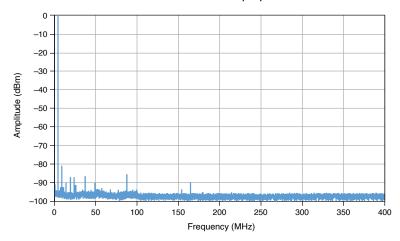
Sine Frequency	Passband Flatness (dB), Warranted	
	0.06 $V_{pk\text{-}pk}$ to 2.75 $V_{pk\text{-}pk}$	>2.75 V _{pk-pk}
40 MHz	±0.45	±0.8

Figure 1. Passband Flatness

Table 2. Spurious-Free Dynamic Range (SFDR) with Harmonics

Sine Frequency	SFDR with Harmonics (dBc), Measured		
	0.1 $V_{pk\text{-}pk}$ to 1 $V_{pk\text{-}pk}$	1 $V_{pk\text{-}pk}$ to 2.75 $V_{pk\text{-}pk}$	>2.75 V _{pk-pk}
1 MHz	62	76	77
3 MHz	62	74	63
5 MHz	61	74	58
10 MHz	61	69	52
20 MHz	61	63	44
30 MHz	59	60	40
40 MHz	55	58	35

Table 3. Spurious-Free Dynamic Range (SFDR) without Harmonics


Sine Frequency	SFDR without Harmonics (dBc), Measured		
	0.1 $V_{pk\text{-}pk}$ to 1 $V_{pk\text{-}pk}$	1 $V_{pk\text{-}pk}$ to 2.75 $V_{pk\text{-}pk}$	>2.75 V _{pk-pk}
1 MHz	62	84	92
3 MHz	62	84	92
5 MHz	62	84	92

Sine Frequency	SFDR without Harmonics (dBc), Measured		
	0.1 $V_{pk\text{-}pk}$ to 1 $V_{pk\text{-}pk}$	$1V_{pk\text{-}pk}$ to 2.75 $V_{pk\text{-}pk}$	>2.75 V _{pk-pk}
10 MHz	61	83	90
20 MHz	61	83	90
30 MHz	61	83	83
40 MHz	61	83	83

Table 4. Total Harmonic Distortion (THD)

Sine Frequency	THD (dBc), Measured	
	0.1 V_{pk-pk} to 2.75 V_{pk-pk}	2.75 V _{pk-pk} to 12 V _{pk-pk}
1 MHz	79	76
3 MHz	73	62
5 MHz	72	56
10 MHz	68	49
20 MHz	61	43
30 MHz	58	39
40 MHz	55	35

Figure 2. 5 MHz Spectrum at 0.6 V_{pk-pk}, Measured

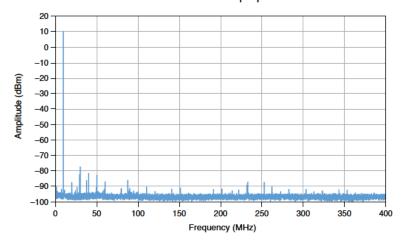


Figure 3. 10 MHz Spectrum at 2 $V_{pk\mbox{-}pk}$, Measured

Figure 4. 1 MHz Spectrum at 6.5 $V_{pk\mbox{-}pk}$, Measured

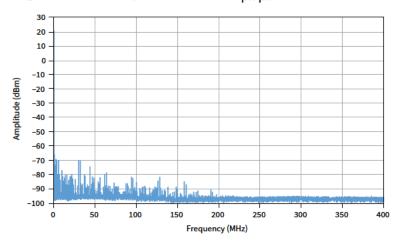
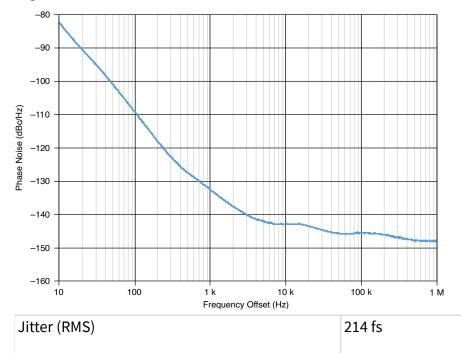



Table 5. Average Noise Density

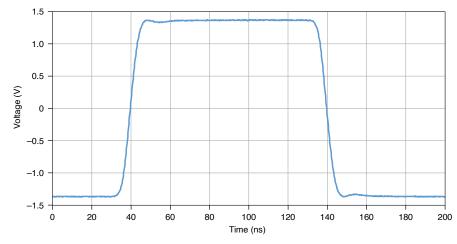
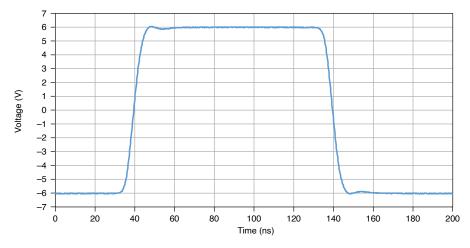

Amplitude	Average Noise Density, Typical	
	dBm/Hz	$\frac{nV}{\sqrt{Hz}}$
0.06 V _{pk-pk}	-154	3.9
0.1 V _{pk-pk}	-154	3.9
0.4 V _{pk-pk}	-150	5.8
1 V _{pk-pk}	-145	13
2 V _{pk-pk}	-141	20
4 V _{pk-pk}	-132	53
12 V _{pk-pk}	-125	107

Figure 5. Phase Noise, Measured


Square Waveform

Frequency range	0 MHz to 25 MHz
Frequency step size	2.84 μHz
Minimum on/off time	17.6 ns
Duty cycle resolution	<0.001%
Rise/fall time	9 ns, measured
Aberration	1.0%, measured
Jitter (RMS)	2 ps, measured

Figure 6. Square Waveform Step Response at 2.75 $V_{\text{pk-pk}},$ Measured

Figure 7. Square Waveform Step Response at 12 $V_{pk\text{-}pk}$, Measured

Ramp and Triangle Waveforms

Frequency range	0 MHz to 5 MHz

User-Defined Function

Frequency range	0 MHz to 40 MHz
Frequency step size	2.84 μHz

Waveform points	8,192
Step response rise time	7 ns, measured

Arbitrary Waveform

Waveform size	2 samples to 64,000,000 samples	
User sample rate		
Digital filter enabled	5.6 μS/s to 200 MS/s	
Digital filter disabled	3.125 MS/s to 200 MS/s	
Waveform filters		
Digital filter enabled	Bandwidth = 0.2 * User Sample Rate	
Digital filter disabled	No reconstruction image rejection	
Minimum quantum size	1 sample	
Rise time		
Digital filter enabled	15.3 ns, measured	
Digital filter disabled	8.4 ns, measured	
Total onboard memory	128 MB per channel	

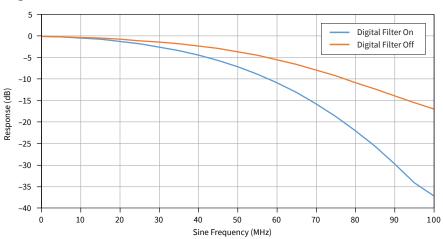


Figure 8. Magnitude Response, Measured

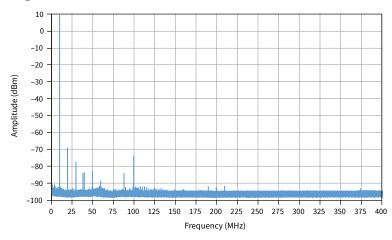
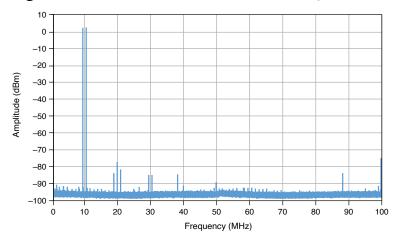



Figure 10. 9.5 MHz and 10.5 MHz Dual-Tone Spectrum, Measured

All Output Modes

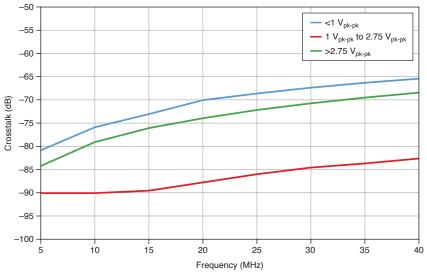
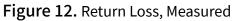



Figure 11. Channel-To-Channel Crosstalk, Measured

Clock

Reference Clock source	Internal
	PXIe_CLK100 (backplane connector)

Reference Clock frequency	100 MHz (<±25 ppm)
Sample Clock rate	800 MHz
Internal timebase accuracy	
Initial calibrated accuracy	1.5 ppm, warranted
Time drift	1 ppm per year, warranted
Accuracy	Initial Calibrated Accuracy ± Time Drift , warranted

Synchronization

Channel-to-channel skew, between the channels of a multichannel PXIe-5423	
<2.75 Vpk-pk	±110 ps
>2.75 Vpk-pk	±275 ps

Note The channels of a multichannel PXIe-5423 are automatically synchronized when they are in the same NI-FGEN session.

Synchronization with the NI-TClk API

NI-TClk is an API that enables system synchronization of supported PXI modules in one or more PXI chassis, which you can use with the PXIe-5423 and NI-FGEN.

NI-TClk uses a shared Reference Clock and triggers to align the Sample Clocks of PXI modules and synchronize the distribution and reception of triggers. These signals are routed through the PXI chassis backplane without external cable connections between PXI modules in the same chassis.

Module-to-module skew, between PXIe-5423 modules using NI-TClk

NI-TClk synchronization without manual adjustment		
Skew, peak-to-peak	300 ps, typical	
Jitter, peak-to-peak	125 ps, typical	
NI-TClk synchronization with manual adjustment		
Skew, average	<10 ps	
Jitter, peak-to-peak	5 ps	
Sample Clock delay/adjustment resolution	3.8E(-6) * Sample Clock period	
	For example, at 100 MS/s, 3.8E(-6) * (1/100 MS/s) = 38 fs.	

PFI I/O

Number of terminals	10
Connector type	·
PFI 0 and PFI 1	SMA
AUX 0/PFI <07>	MHDMR
Logic level	3.3 V
Maximum input voltage	+5 V
V _{IH}	2 V
V _{IL}	0.8 V

Frequency range	0 MHz to 25 MHz
PFI-to-channel crosstalk	-80 dBc, measured

Trigger

Sources/destinations	 PFI <01> (SMA front panel connectors) AUX 0/PFI <07> (MHDMR front panel connector) PXI_Trig <07> (backplane connector)
Supported triggers	Start Trigger Script Trigger
Trigger type	Rising edge
Trigger modes	Single Continuous Stepped Burst
Input impedance (DC)	>100 kΩ

Marker

Destinations	PFI <01> (SMA front panel connectors)

	AUX 0/PFI <07> (MHDMR front panel connector) PXI_Trig <07> (backplane connector)
Pulse width	200 ns
Marker to output skew	
PFI <01> and AUX 0/PFI <07>	±2 ns
PXI_Trig <07>	±20 ns
Maximum number of marker outputs per waveform	4

Calibration

Self-calibration	An onboard reference is used to calibrate the DC gain and offset. The self-calibration is initiated by the user through the software and takes approximately 2 minutes to complete.
External calibration	External calibration calibrates the TCXO, voltage reference, and DC gain and offset. Appropriate constants are stored in nonvolatile memory.
Calibration interval	Specifications valid within 2 years of external calibration
Warm-up time	15 minutes

Power

Current

+3.3 V rail	2.3 A
+12 V rail	1.8 A
Total power	29 W

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit and MIL-PRF-28800F Class 2 high temperature limit.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)
---------------------------	---

, ,	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g _{rms} (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Physical

Dimensions	21.6 cm × 2.0 cm × 13.0 cm (8.5 in. × 0.8 in. × 5.1 in.) 3 U, one slot, PXI Express module
Weight	
One channel	369 g (13.0 oz)
Two channels	376 g (13.3 oz)
Bus interface	·
Form factor	Gen 1 x4 module
Slot compatibility	PXI Express or hybrid

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the <u>Product Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the <u>Online Product Certification</u> section.

CE Compliance 🤇 🧲

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/certification</u>, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Minimize Our Environmental Impact** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document. Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/</u><u>environment/weee</u>.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)