PXI-5441 Specifications

Contents

PXI-5441 Specifications

These specifications apply to the 32 MB, 256 MB, and 512 MBPXI-5441.

Notice To ensure the specified EMC performance, operate this product only with shielded cables and accessories.

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are **Nominal** unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Analog filter enabled
- Digital-to-analog converter (DAC) interpolation set to maximum allowed factor for a given sample rate
- Signals terminated with 50 Ω
- Direct path set to 1 $V_{pk-pk},$ Low-Gain Amplifier path set to 2 $V_{pk-pk},$ and High-Gain Amplifier path set to 12 V_{pk-pk}
- Sample clock set to 100 MS/s

Warranted specifications are valid under the following conditions unless otherwise noted.

• Ambient temperature ranges of 0 °C to 55 °C

Typical specifications are valid under the following conditions unless otherwise noted:

• Over ambient temperature ranges of 23 ±5 °C with a 90% confidence level, based on measurements taken during development or production

CH 0

(Channel 0 Analog Output, Front Panel Connector)

Number of channels	1
Connector	SMB (jack)

Output Voltage Characteristics

Output paths	The software-selectable Main Output path setting provides full-scale voltages from 12.00 V _{pk-pk} to 5.64 mV _{pk-pk} into a 50 Ω load. NI- FGEN uses either the Low-Gain Amplifier or the High-Gain Amplifier when the Main Output path is selected, depending on the Gain attribute.
	The software-selectable Direct path is optimized for intermediate frequency (IF) applications and provides full-scale voltages from 0.707 to 1.000 V _{pk-pk} .
DAC resolution	16 bits

Amplitude and Offset

Table 1. Amplitude Range

Path	Load	Minimum Amplitude Value (V _{pk-pk})	Maximum Amplitude Value (V _{pk-pk})
Direct	50 Ω	0.707	1.00
	1 kΩ	1.35	1.91
	Open	1.41	2.00
Low-Gain Amplifier	50 Ω	0.00564	2.00
	1 kΩ	0.0107	3.81
	Open	0.0113	4.00
High-Gain Amplifier	50 Ω	0.0338	12.0
	1 kΩ	0.0644	22.9
	Open	0.0676	24.0

Amplitude resolution	<0.06% (0.004 dB) of amplitude range
Offset range	Span of ±25% of the amplitude range with increments <0.0014% of amplitude range

Maximum Output Voltage

Table 2. Maximum Output Voltage

Path	Load	Maximum Output Voltage (V _{pk-} _{pk})
Direct	50 Ω	±0.500
	1 kΩ	±0.953
	Open	±1.000
Low-Gain Amplifier	50 Ω	±1.000
	1 kΩ	±1.905
	Open	±2.000
High-Gain Amplifier	50 Ω	±6.000

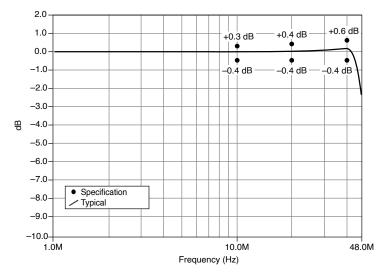
Path	Load	Maximum Output Voltage (V _{pk-} _{pk})
	1 kΩ	±11.43
	Open	±12.00

Accuracy

DC Accuracy		
Low-Gain or High-Gain Amplifier path	 ±0.2% of amplitude range ±0.05% of offset ±500 μV (within ±10 °C of self-calibration temperature) ±0.4% of amplitude range ±0.05% of offset ±1 mV (0 to 55 °C) 	
Direct path	Gain accuracy: ±0.2% amplitude range (within ±10 °C of self-calibration temperature) Gain accuracy: ±0.4% amplitude range (0 to 55 °C) DC error: ±30 mV (0 to 55 °C)	
AC amplitude accuracy	(+2.0% + 1 mV), (-1.0% - 1 mV) (+0.8% + 0.5 mV), (-0.2% - 0.5 mV), typical	

Output Characteristics

Output impedance	50 Ω nominal or 75 Ω nominal, software-selectable
Load impedance compensation	Output amplitude is compensated for user- specified load impedances.


Output coupling	DC
Output enable	Software-selectable. When disabled, CH 0 output is terminated with a 1 W resistor with a value equal to the selected output impedance
Maximum output overload	The CH 0 output terminal can be connected to a 50 Ω , ±12 V (±8 V for the Direct path) source without sustaining any damage. No damage occurs if the CH 0 output is shorted to ground indefinitely.
Waveform summing	The CH 0 output supports waveform summing among similar paths-specifically, the output terminals of multiple PXI-5441 signal generators can be connected together.

Frequency and Transient Response

Bandwidth	43 MHz	
DAC digital interpolation filter	Software-selectable finite impulse response (FIR) filter. Available interpolation factors are 2, 4, or 8.	
Analog filter	Software-selectable 7-pole elliptical filter for image suppression.	
Passband flatness		
Direct path	-0.4 to +0.6 dB (100 Hz to 40 MHz)	
Low-gain amplifier path	-1.0 to +0.5 dB (100 Hz to 20 MHz)	
High-gain amplifier path	-1.2 to +0.5 dB (100 Hz to 20 MHz)	

Pulse response		
Rise/fall time		
Direct path	<5 ns <4.5 ns, typical	
Low-gain amplifier path	<8 ns	
	<7 ns	
	<5.5 ns, typical	
High-gain amplifier path	<10 ns	
Aberration		
Direct path	<10%, typical	
Low-gain amplifier path	<5%, typical	
High-gain amplifier path	<5%, typical	

Figure 1. Normalized Passband Flatness, Direct Path

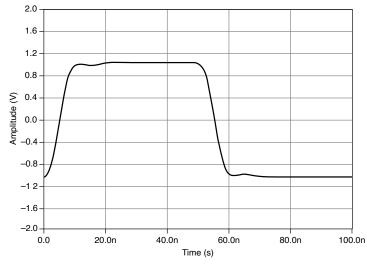
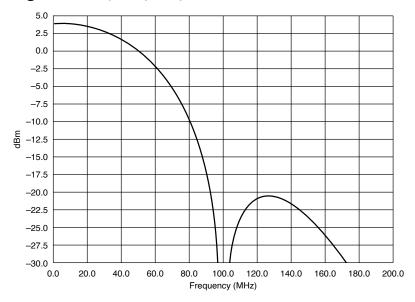



Figure 2. Pulse Response, Low-Gain Amplifier Path 50 Ω Load

Figure 3. Frequency Response of Direct Path, 100 MS/s, 1x DAC Interpolation

Suggested Maximum Frequencies for Common Functions

Direct	
Sine	43 MHz
Square	Not recommended

Ramp	Not recommended
Triangle	Not recommended
Low-Gain Amplifier	
Sine	43 MHz
Square	25 MHz
Ramp	5 MHz
Triangle	5 MHz
High-Gain Amplifier	
Sine	43 MHz
Square	12.5 MHz
Ramp	5 MHz
Triangle	5 MHz

Spectral Characteristics

 Table 3. Signal to Noise and Distortion (SINAD), Typical

Frequency (MHz)	SINAD (dB), Typical		
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path
1	64	66	63
10	61	60	47
20	57	56	42
30	60	62	62
40	60	62	62

Frequency (MHz)	SINAD (dB), Typical		
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path
43	58	60	55

Table 4. Spurious-Free Dynamic Range (SFDR) with Harmonics, Typical

Frequency (MHz)	SFDR (dB) with Harmonics, Typical		
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path
1	76	71	58
10	68	64	47
20	60	57	42
30	73	73	74
40	76	73	74
43	78	75	59

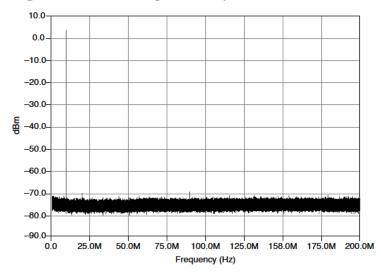
Table 5. SFDR without Harmonics, Typical

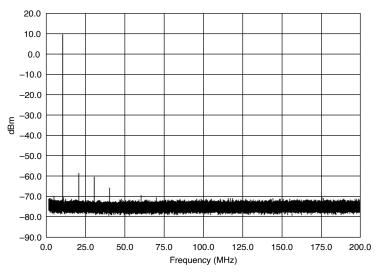
Frequency (MHz)	SFDR (dB) without Harmonics, Typical		
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path
1	87	90	90
10	86	88	90
20	79	88	88
30	72	72	73
40	75	72	73
43	77	74	59

Table 6. 0 °C to 40 °C Total Harmonic Distortion (THD)

Frequency (MHz)	THD (dBc)	THD (dBc)		
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path	
20 kHz	-77, typical	-77, typical	-77, typical	
1 MHz	-75, typical	-70, typical	-62, typical	
5 MHz	-68	-68	-55	

Frequency (MHz)	THD (dBc)			
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path	
10 MHz	-65 -66, typical	-61 -66, typical	-46	
20 MHz	-55 -61, typical	-53 -61, typical	-40	
30 MHz	-50 -57, typical	-48 -57, typical	-38	
40 MHz	-47 -54, typical	-46 -54, typical	-34	
43 MHz	-46 -53, typical	-45 -53, typical	-33	


Table 7. 0 °C to 55 °C Total Harmonic Distortion (THD)


Frequency (MHz)	THD (dBc)		
	Direct Path	Low-Gain Amplifier Path	High-Gain Amplifier Path
20 kHz	-76, typical	-76, typical	-76, typical
1 MHz	-74, typical	-69, typical	-61, typical
5 MHz	-67	-67	-54
10 MHz	-63	-60	-45
20 MHz	-54 -57	-52 -55	-39
30 MHz	-48 -52	-46 -50	-36
40 MHz	-45 -50	-41 -47	-32
43 MHz	-44 -49	-41 -46	-31

Path Amplitude Range		ge	Average Noise Density		
	V _{pk-pk}	dBm	$\frac{nv}{\sqrt{Hz}} \frac{nv}{\sqrt{Hz}}$	dBm/Hz	dBFS/Hz
Direct	1	4.0	18	-142	-146.0
Low Gain	0.06	-20.4	9	-148	-127.6
	0.1	-16.0	9	-148	-132.0
	0.4	-4.0	13	-145	-141.0
	1	4.0	18	-142	-146.0
	2	10.0	35	-136	-146.0
High Gain	4	16.0	71	-130	-146.0
	12	25.6	213	-120	-145.6

Table 8. Average Noise Density

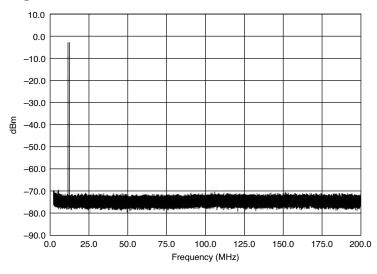

Figure 4. 10 MHz Single-Tone Spectrum, Direct Path, 100 MS/s, DAC Interpolation Factor Set to 4

Figure 5. 10 MHz Single-Tone Spectrum, Low-Gain Amplifier Path, 100 MS/s, DAC Interpolation Factor Set to 4

Figure 6. Direct Path, Two-Tone Spectrum, Typical

Sample Clock

Sample clock sources

Internal, Divide-by-N (N \geq 1)

Internal, DDS-based, high-resolution

External, CLK IN (SMB front panel connector)

External, DDC CLK IN (DIGITAL DATA & CONTROL front panel connector)
External, PXI Star trigger (PXI backplane connector)
External, PXI_Trig<07> (PXI backplane connector)

Sample Rate Range and Resolution

Sample Clock Source	Sample Rate Range	Sample Rate Resolution
Divide-by-N	23.84 S/s to 100 MS/s	Settable to (100 MS/s)/N (1 ≤ N ≤ 4,194,304)
High Resolution	10 S/s to 100 MS/s	1.06 μHz
CLK IN	200 kS/s to 105 MS/s	Resolution determined by
DDC CLK IN	10 S/s to 105 MS/s	external clock source. External
PXI Star Trigger	10 S/s to 105 MS/s	sample clock duty cycle tolerance 40 to 60%.
PXI_Trig<07>	10 S/s to 20 MS/s	

DAC Effective Sample Rate

Sample Rate (MS/s)	DAC Interpolation Factor	Effective Sample Rate
10 S/s to 105 MS/s	1 (off)	10 S/s to 105 MS/s
12.5 MS/s to 105 MS/s	2	25 MS/s to 210 MS/s
10 MS/s to 100 MS/s	4	40 MS/s to 400 MS/s
10 MS/s to 50 MS/s	8	80 MS/s to 400 MS/s

Sample Clock Delay Range and Resolution

Sample Clock Source	Delay Adjustment Range	Delay Adjustment Resolution
Divide-by-N	±1 Sample clock period	<10 ps
High-Resolution	±1 Sample clock period	Sample clock period/16,384
External (all)	0 to 7.6 ns	<15 ps

System Phase Noise and Jitter (10 MHz Carrier)

Sample Clock	System Phase Noise Density (dBc/Hz) Offset		System Output	
Source	100 Hz	1 kHz	10 kHz	Jitter (Integrated from 100 Hz to 100 kHz)
Divide-by-N	-110	-131	-137	<1.0 ps rms
High-Resolution	-114	-126	-126	<4.0 ps rms
CLK IN	-113	-132	-135	<1.1 ps rms
PXI Star Trigger	-115	-118	-130	<3.0 ps rms

External Sample Clock Input Jitter Tolerance	
Cycle-cycle jitter	±300 ps
Period Jitter	±1 ns

Sample Clock Exporting

Exported Sample Clock Destinations	PFI<01> (SMB front panel connectors)
	DDC CLK OUT (DIGITAL DATA & CONTROL front panel connector)
	PXI_Trig<06> (PXI backplane connector)

Destination	Maximum Frequency	Jitter, typical	Duty Cycle
PFI<01>	105 MHz	PFI 0: 6 ps rms PFI 1: 12 ps rms	25 to 65%
DDC CLK OUT	105 MHz	40 ps rms	40 to 60%
PXI_Trig<06>	20 MHz	-	

Note Sample clock purity can significantly affect the performance of the PXI-5441. High amounts of jitter or phase noise in the sample clock can create spurs in the signal generator's spectrum that are not present when using a pure sample clock. For example, if the Clock Mode property is set to Automatic, NI-FGEN often selects High-Resolution clocking to achieve a specific IQ rate. High-Resolution clocking has more jitter than Divide-By-N clocking and may create extra spurs in the waveform generator output spectrum. To remove extra spurs without using software resampling, you can use a pure external clock such as the PXI-5650/5651/5652 frequency sources, with low jitter and <1 Hz frequency resolution.

Onboard Clock (Internal VCXO)

Clock Source	Internal sample clocks can either be locked to a reference clock using a phase-locked loop or be derived from the onboard VCXO frequency reference.
Frequency Accuracy	±25 ppm

Phase-Locked Loop (PLL) Reference Clock

Reference Clock Sources	PXI_CLK10 (PXI backplane connector) CLK IN (SMB front panel connector)
Frequency Accuracy	When using the PLL, the frequency accuracy of the PXI-5441 is solely dependent on the frequency accuracy of the PLL reference clock source.
Lock Time	70 ms, typical

	200 ms, maximum
Frequency Range	5 to 20 MHz in increments of 1 MHz. Default of 10 MHz. The PLL reference clock frequency must be accurate to ±50 ppm.
Duty Cycle Range	40 to 60%
Exported PLL Reference Clock Destinations	PFI<01> (SMB front panel connectors) PXI_Trig<06> (PXI backplane connector)

CLK IN (Sample Clock and Reference Clock Input, Front Panel Connector)

Connector	SMB (jack)
Direction	Input
Destinations	Sample clock PLL reference clock
Frequency Range	 1 to 105 MHz (sample clock destination and sine waves) 200 kHz to 105 MHz (sample clock destination and square waves) 5 to 20 MHz (PLL reference clock destination)
Input Voltage Range	Sine wave: 0.65 to 2.8 V _{pk-pk} into 50 Ω (0 dBm to +13 dBm)

	Square wave: 0.2 to 2.8 $V_{pk\mbox{-}pk}$ into 50 Ω
Maximum Input Overload	±10 V
Input Impedance	50 Ω
Input Coupling	AC

TClk Synchronization

Intermodule SMC Synchronization Using NI-TClk for Identical Modules

National Instruments TClk synchronization method and the NI-TClk instrument driver are used to align the Sample Clocks on any number of SMC-based modules in a chassis.

- Specifications are valid for any number of PXI modules installed in one PXI-1042 chassis
- All parameters are set to identical values for each SMC-based module
- Sample Clock is set to 100 MS/s, Divide-by-N, and all filters are disabled
- For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support

Skew	500 ps, typical
Average skew after manual adjustment	<10 ps, typical
Sample Clock delay/adjustment resolution	≤10 ps, typical

Note Although you can use NI-TClk to synchronize nonidentical modules, these specifications apply only to synchronizing identical modules.

PFI 0 and PFI 1 (Programmable Function Interface, Front Panel Connectors)

Connectors	Two SMB (jacks)
Direction	Bidirectional
Frequency Range	DC to 105 MHz

As an Input (Trigger)

Destinations	Start trigger
Maximum Input Overload	-2 to +7 V
V _{IH}	2.0 V
V _{IL}	0.8 V
Input Impedance	1 kΩ

As an Output (Event)

Sources	Sample clock divided by integer K (1 ≤ K ≤ 4,194,304)
	Sample clock timebase (100 MHz) divided by integer M ($2 \le M \le 4,194,304$)
	PLL reference clock
	Marker

	Exported start trigger (Out Start trigger)
Output Impedance	50 Ω
Maximum Output Overload	-2 to +7 V
V _{OH}	Minimum: 2.9 V (open load), 1.4 V (50 Ω load)
V _{OL}	Maximum: 0.2 V (open load), 0.2 V (50 Ω load)
Rise/Fall Time	≤2.0 ns

DIGITAL DATA & CONTROL (DDC)

Optional Front Panel Connector

Connector type	68-pin VHDCI female receptacle
Number of Data Output Signals	16
Control signals	DDC CLK OUT (clock output)
	DDC CLK IN (clock input)
	PFI 2 (input)
	PFI 3 (input)
	PFI 4 (output)
	PFI 5 (output)
Ground	23 pins

Output Signal Characteristics (Includes Data Outputs, DDC CLK OUT, and PFI<4..5>)

LVDS (Low-Voltage Differential Signal)	
V _{OH}	1.3 V, typical
	1.7 V, maximum
V _{OL}	0.8 V, minimum
	1.0 V , typical
Differential Output Voltage	0.25 V , minimum
	0.45 V , maximum
Output Common-Mode Voltage	1.125 V , minimum
	1.375 V , maximum
Differential Pulse Skew (skew within a differential pair)	0.6 ns , maximum
Rise/Fall time	0.5 ns , typical
	1.6 ns , maximum
Output skew	Typical: 1 ns; maximum 2 ns. Skew between any two output terminals on the DIGITAL DATA & CONTROL front panel connector.
Output Enable/Disable	Controlled through the software on all data output signals and control signals collectively. When disabled, the output terminals go to a high-impedance state.

Maximum Output Overload	-0.3 to +3.9 V

Input Signal Characteristics (Includes DDC CLK IN and PFI<2..3>)

Signal type	LVDS (Low-Voltage Differential Signal)	
Input Differential Impedance	100 Ω	
Maximum Output Overload	-0.3 to +3.9 V	
Signal Characteristics		
Differential Input Voltage	0.1 V, minimum	
	0.5 V, maximum	
Input Common Mode Voltage	0.2 V, minimum	
	2.2 V, maximum	

DDC CLK OUT

Clocking format	Data outputs and markers change on the falling edge of DDC CLK OUT.
Frequency Range	Refer to the Sample Clock section for more information
Duty cycle	40 to 60%
Jitter	40 ps rms

DDC CLK IN

Clocking format	DDC data output signals change on the rising edge of DDC CLK IN.
Frequency range	10 Hz to 105 MHz
Input Duty Cycle Tolerance	40 to 60%
Input Jitter Tolerances	300 ps pk-pk of cycle-cycle jitter, and 1 ns rms of period jitter.

Start Trigger

Sources	PFI<01> (SMB front panel connectors)
	PFI<23> (DIGITAL DATA & CONTROL front panel connector)
	PXI_Trig<07> (backplane connector)
	PXI Star trigger (backplane connector)
	Software (use function call)
	Immediate (does not wait for a trigger). Default.
Modes	Single
	Continuous
	Stepped
	Burst

Edge Detection	Rising
Minimum Pulse Width	25 ns

 Table 9. Delay from Start Trigger to CH 0 Analog Output with OSP Disabled.

DAC Interpolation Factor	Typical Delay	
Digital interpolation filter disabled	44 Sample cloc 110 ns	k periods +
2	58 Sample cloc 110 ns	k periods +
4	64 Sample cloc 110 ns	k periods +
8	65 Sample cloc 110 ns	k periods +
Delay from Start Trigger to Digita with OSP Disabled.	al Data Output	40 Sample clock periods + 110 ns
Additional Delay for Function Generator Mode		Add 33 Sample clock periods. (Applicable to delay from Start trigger to CH0 analog output and delay from Start trigger to digital data output)
Additional Delay with OSP Enabled		Add 70 Sample clock periods for real data processing mode
		Add 73 Sample clock periods for complex data processing mode.
		(Applicable to delay from Start trigger to CH0 analog output and delay from Start trigger to digital data output)
Exported Trigger Destinations		A signal used as a trigger can be routed out to any destination listed in the Destinations specification in the Markers section.

Exported Trigger Delay	65 ns, typical
Exported Trigger Pulse Width	>150 ns

Markers

Destinations	PFI<01> (SMB front panel connectors)
	PFI<45> (DIGITAL DATA & CONTROL front panel connector)
	PXI_Trig<06> (backplane connector)
Quantity	One marker per segment
Quantum	Marker position must be placed at an integer multiple of four samples (two samples for Complex (IQ) data).
Width	>150 ns

Table 10. Skew

Destination	With Respect to Ana	log Output	With Respect to Digital Data Output
PFI<01>	±2 Sample Clock Periods		N/A
PFI<45>	N/A		<2 ns
PXI_Trig<06>	±2 Sample Clock Periods		N/A
Jitter		os rms	

Arbitrary Waveform Generation Mode

Memory usage	The PXI-5441 uses the Synchronization and Memory Core (SMC) technology in which waveforms and instructions share onboard memory. Parameters, such as number of segments in sequence list, maximum number of waveforms in memory, and number of samples available for waveform storage, are flexible and user defined.
Onboard Memory Size	
32 MB option	33,554,432 bytes
256 MB option	268,435,456 bytes
512 MB option	536,870,912 bytes
Output modes	Arbitrary Waveform mode and Arbitrary Sequence mode
Arbitrary Waveform Mode	In Arbitrary Waveform mode, a single waveform is selected from the set of waveforms stored in onboard memory and generated.
Arbitrary Sequence Mode	In Arbitrary Sequence mode, a sequence directs the PXI-5441 to generate a set of waveforms in a specific order. Elements of the sequence are referred to as segments. Each segment is associated with a set of instructions. The instructions identify which waveform is selected from the set of waveforms in memory, how many loops (iterations) of the waveform are generated, and at which sample in the waveform a marker output signal is sent.

Trigger Mode	Arbitrary Wave	eform Mode	Arbitrary Sequence Mode
Single	16		16
Continuous	16		96 at >50 MS/s
			32 at ≤50 MS/s
Stepped	32		96 at >50 MS/s
			32 at ≤50 MS/s
Burst	16		512 at >50 MS/s
			256 at ≤50 MS/s
Loop count		1 to 16,777,215	
		Burst trigger:	Unlimited
Quantum		Waveform size must be an integer multiple of four samples (two samples for complex (IQ) data).	

Table 11. Minimum Waveform Size (Samples)

Table 12. Memory Limits

	32 MB Option	256 MB Option	512 MB Option	Comments
Arbitrary Waveform Mode, Maximum Waveform Memory	16,777,088 samples	134,217,600 samples	268,435,328 samples	For complex (IQ) data maximum waveform memory is halved.
Arbitrary Sequence Mode, Maximum Waveform Memory	16,777,008 samples	134,217,520 samples	268,435,200 samples	Condition: One or two segments in a sequence. For complex (IQ) data maximum waveform memory is halved.
Arbitrary Sequence Mode, Maximum Waveforms	262,000 Burst trigger: 32,000	2,097,000 Burst trigger: 262,000	4,194,000 Burst trigger: 524,000	Condition: One or two segments in a sequence.

	32 MB Option	256 MB Option	512 MB Option	Comments
Arbitrary Sequence Mode, Maximum Segments in a Sequence	418,000 Burst trigger: 262,000	3,354,000 Burst trigger: 2,090,000	6,708,000 Burst trigger: 4,180,000	Condition: Waveform memory is <4,000 samples. (<2,000 samples for complex (IQ) data.)

Table 13. Waveform Play Times

	32 MB Option	256 MB Option	512 MB Option
Maximum Play Time, Sample Rate = 100 MS/s, OSP Disabled	0.16 seconds	1.34 seconds	2.68 seconds
Maximum Play Time, IQ Rate = 1 MS/s, Real Mode, OSP Enabled	16 seconds	2 minutes and 14 seconds	4 minutes and 28 seconds
Maximum Play Time, IQ Rate = 100 kS/s, Real Mode, OSP Enabled	2 minutes and 47 seconds	22 minutes and 22 seconds	44 minutes and 43 seconds

Function Generation Mode

Standard Waveforms and Maximum Frequencies		
Sine	43 MHz	
Square	25 MHz	
Triangle	5 MHz	
Ramp Up	5 MHz	
Ramp Down	5 MHz	
DC	N/A	

Noise (Pseudo-Random)	5 MHz
User Defined	43 MHz
Memory Size	65,536 samples for 1/4 symmetric waveforms (Example: Sine) 16, 384 samples for non-1/4 symmetric waveforms (Example: Ramp)
Frequency Resolution	355 nHz
Phase Resolution	0.0055°

Onboard Signal Processing (OSP)

IQ Rate

OSP Interpolation Range	12 to 512 (multiples of 2)
	512 to 1,024 (multiples of 4)
	1,024 to 2,048 (multiples of 8)
	(OSP Interpolation = FIR Interpolation x CIC Interpolation)
IQ Rate	Sample rate/OSP interpolation (Lower IQ rates are possible by either lowering the sample rate or doing software interpolation)
Data Processing Modes	Real (I path only)
	Complex (IQ)

Prefilter Gain and Offset

Prefilter Gain and Offset Resolution	18 bits
Prefilter Gain Range	-2.0 to +2.0 (Values < 1 attenuate user data)
Prefilter Offset Range	-1.0 to +1.0
Output	(User data x Prefilter gain) + Prefilter offset(-1 ≤ output ≤ +1)

FIR (Finite Impulse Response) Filter The FIR filter is used to pulse shape the IQ data and to compensate for the CIC filter roll-off.

Filter Length	95 Taps
Coefficient Width	17 bits (-1 to +1)
Filter Symmetry	Symmetric
Interpolation Range	2, 4, or 8
Coefficients	Automatically generated by NI-FGEN (refer to FIR Filter Types) or Custom Coefficients provided by the user

Table 14. FIR Filter Types

Туре	Parameter	Minimum	Maximum
Custom	-	-	-
Flat	Passband	0.1	0.43

Туре	Parameter	Minimum	Maximum
Gaussian	BT	0.1	0.9
Raised Cosine	Alpha	0.1	0.9
Root Raised Cosine	Alpha	0.1	0.9

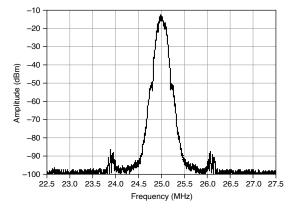
CIC (Cascaded Integrator-Comb) Filter The CIC Filter does the majority of the interpolation in the OSP.

Size	6 stages
Interpolation Range	6 ≤ Interpolation ≤ 256 (integers)

Numerically Controlled Oscillator (NCO)

Frequency Range	1 mHz to (0.43 x sample rate)
Frequency Resolution	Sample rate / 2
I and Q Phase Resolution	0.0055°
Phase Quantization	16 bits
Tuning Speed	1 ms

Table 15. Modulation Performance, Typical


Modulation		FIR Interpolation		
Configuration	Туре	2	4	8
GSM Physical Layer	MER (Modulation Error Ratio)	46 dB	47 dB	42 dB
	EVM (Error Vector Magnitude)	<0.5% rms	<0.5% rms	<0.8% rms
W-CDMA Physical Layer	MER	46 dB	39 dB	_

Modulation	Measurement	FIR Interpolation		
Configuration	Туре	2	4	8
	EVM	<7 0.5 % rms	<1.0% rms	
	ACPR (Adjacent Channel Power Ratio) (External Sample Clock)	65 dBc	68 dBc	
	ACPR (High- Resolution Sample Clock)	61 dBc	61 dBc	
DVB Physical	MER	43 dB	-	_
Layer	EVM	<0.6% rms	—	—
	ACPR (Adjacent Channel Power Ratio) (External Sample Clock)	48 dBc		
	ACPR (High- Resolution Sample Clock)	47 dBc		-

Digital Performance

Maximum NCO Spur	<-90 dBc

FIR Interpolation	IQ Rate Range (with 100 MS/s Sample Clock Rate)	OSP Out of Band Suppression	OSP Passband Ripple
2	195 kS/s to 8.33 MS/s	63 dB	0 to -0.08 dB
4	97.6 kS/s to 4.16 MS/s	74 dB	0 to -0.08 dB
8	48.8 kS/s to 2.08 MS/s	40 dB	0 to -0.08 dB

Figure 7. GSM Physical Layer External Sample Clocking = 99.665 MHz

Figure 8. GSM Physical Layer Internal (High Resolution) Sample Clocking = 99.665 MHz

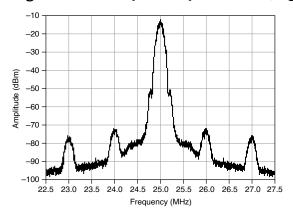
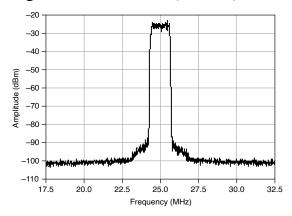



Figure 9. CDMA 2000 Physical Layer External Sample Clocking = 98.304 MHz

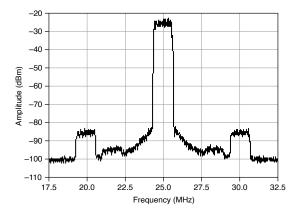
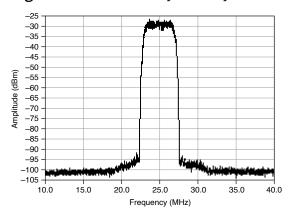
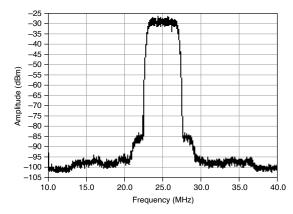
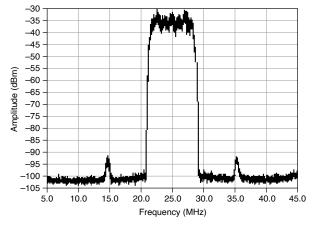
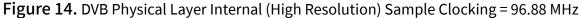


Figure 10. CDMA 2000 Physical Layer Internal (High Resolution) Sample Clocking = 98.304 MHz

Figure 11. W-CDMA Physical Layer External Sample Clocking = 92.16 MHz

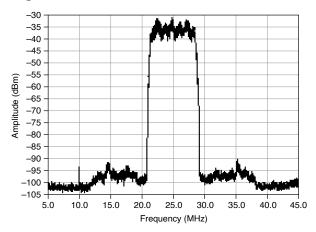

Figure 12. W-CDMA Physical Layer Internal (High Resolution) Sample Clocking = 92.16 MHz

Figure 13. DVB Physical Layer External Sample Clocking = 96.88 MHz

Calibration

Self-Calibration	An onboard, 24-bit ADC and precision voltage reference are used to calibrate the DC gain and offset. The self-calibration is initiated by the user through the software and takes approximately 75 seconds to complete.
External Calibration	The external calibration calibrates the VCXO, voltage reference, output impedance, DC gain, and offset. Appropriate constants are stored in nonvolatile memory.

Calibration Interval	Specifications valid within 2 years of external calibration
Warm-up Time	15 minutes

Power

1.9 A, typical
2.7 A, typical
2.2 A, typical
2.4 A, typical
0.46 A, typical
0.5 A, typical
0.01 A, typical
0.01 A, typical
22.9 W, typical
27.0 W, typical

Physical

Dimensions	3U, one-slot, PXI/cPCI module
	21.6 cm × 2.0 cm × 13.0 cm (8.5 in. × 0.8 in. × 5.1 in.)
Weight	345 g (12.1 oz)

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
	0 °C to 45 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.) when installed in a PXI-101x or PXI-1000B chassis
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	-25 °C to 85 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)	
---------------------------	--	--

, .	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Shock	
Operating	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Storage	50 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.31 g _{rms} (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.46 g _{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国 RoHS)

• ●●● 中国 RoHS— NI 符合中国电子信息产品中限制使用某些有害物质 指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/ rohs_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs_china.)